Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinal arithmetic
oawordeulem
Next ⟩
oawordeu
Metamath Proof Explorer
Ascii
Unicode
Theorem
oawordeulem
Description:
Lemma for
oawordex
.
(Contributed by
NM
, 11-Dec-2004)
Ref
Expression
Hypotheses
oawordeulem.1
⊢
A
∈
On
oawordeulem.2
⊢
B
∈
On
oawordeulem.3
⊢
S
=
y
∈
On
|
B
⊆
A
+
𝑜
y
Assertion
oawordeulem
⊢
A
⊆
B
→
∃!
x
∈
On
A
+
𝑜
x
=
B
Proof
Step
Hyp
Ref
Expression
1
oawordeulem.1
⊢
A
∈
On
2
oawordeulem.2
⊢
B
∈
On
3
oawordeulem.3
⊢
S
=
y
∈
On
|
B
⊆
A
+
𝑜
y
4
3
ssrab3
⊢
S
⊆
On
5
oaword2
⊢
B
∈
On
∧
A
∈
On
→
B
⊆
A
+
𝑜
B
6
2
1
5
mp2an
⊢
B
⊆
A
+
𝑜
B
7
oveq2
⊢
y
=
B
→
A
+
𝑜
y
=
A
+
𝑜
B
8
7
sseq2d
⊢
y
=
B
→
B
⊆
A
+
𝑜
y
↔
B
⊆
A
+
𝑜
B
9
8
3
elrab2
⊢
B
∈
S
↔
B
∈
On
∧
B
⊆
A
+
𝑜
B
10
2
6
9
mpbir2an
⊢
B
∈
S
11
10
ne0ii
⊢
S
≠
∅
12
oninton
⊢
S
⊆
On
∧
S
≠
∅
→
⋂
S
∈
On
13
4
11
12
mp2an
⊢
⋂
S
∈
On
14
onzsl
⊢
⋂
S
∈
On
↔
⋂
S
=
∅
∨
∃
z
∈
On
⋂
S
=
suc
z
∨
⋂
S
∈
V
∧
Lim
⋂
S
15
13
14
mpbi
⊢
⋂
S
=
∅
∨
∃
z
∈
On
⋂
S
=
suc
z
∨
⋂
S
∈
V
∧
Lim
⋂
S
16
oveq2
⊢
⋂
S
=
∅
→
A
+
𝑜
⋂
S
=
A
+
𝑜
∅
17
oa0
⊢
A
∈
On
→
A
+
𝑜
∅
=
A
18
1
17
ax-mp
⊢
A
+
𝑜
∅
=
A
19
16
18
eqtrdi
⊢
⋂
S
=
∅
→
A
+
𝑜
⋂
S
=
A
20
19
sseq1d
⊢
⋂
S
=
∅
→
A
+
𝑜
⋂
S
⊆
B
↔
A
⊆
B
21
20
biimprd
⊢
⋂
S
=
∅
→
A
⊆
B
→
A
+
𝑜
⋂
S
⊆
B
22
oveq2
⊢
⋂
S
=
suc
z
→
A
+
𝑜
⋂
S
=
A
+
𝑜
suc
z
23
oasuc
⊢
A
∈
On
∧
z
∈
On
→
A
+
𝑜
suc
z
=
suc
A
+
𝑜
z
24
1
23
mpan
⊢
z
∈
On
→
A
+
𝑜
suc
z
=
suc
A
+
𝑜
z
25
22
24
sylan9eqr
⊢
z
∈
On
∧
⋂
S
=
suc
z
→
A
+
𝑜
⋂
S
=
suc
A
+
𝑜
z
26
vex
⊢
z
∈
V
27
26
sucid
⊢
z
∈
suc
z
28
eleq2
⊢
⋂
S
=
suc
z
→
z
∈
⋂
S
↔
z
∈
suc
z
29
27
28
mpbiri
⊢
⋂
S
=
suc
z
→
z
∈
⋂
S
30
13
oneli
⊢
z
∈
⋂
S
→
z
∈
On
31
3
inteqi
⊢
⋂
S
=
⋂
y
∈
On
|
B
⊆
A
+
𝑜
y
32
31
eleq2i
⊢
z
∈
⋂
S
↔
z
∈
⋂
y
∈
On
|
B
⊆
A
+
𝑜
y
33
oveq2
⊢
y
=
z
→
A
+
𝑜
y
=
A
+
𝑜
z
34
33
sseq2d
⊢
y
=
z
→
B
⊆
A
+
𝑜
y
↔
B
⊆
A
+
𝑜
z
35
34
onnminsb
⊢
z
∈
On
→
z
∈
⋂
y
∈
On
|
B
⊆
A
+
𝑜
y
→
¬
B
⊆
A
+
𝑜
z
36
32
35
biimtrid
⊢
z
∈
On
→
z
∈
⋂
S
→
¬
B
⊆
A
+
𝑜
z
37
oacl
⊢
A
∈
On
∧
z
∈
On
→
A
+
𝑜
z
∈
On
38
1
37
mpan
⊢
z
∈
On
→
A
+
𝑜
z
∈
On
39
ontri1
⊢
B
∈
On
∧
A
+
𝑜
z
∈
On
→
B
⊆
A
+
𝑜
z
↔
¬
A
+
𝑜
z
∈
B
40
2
38
39
sylancr
⊢
z
∈
On
→
B
⊆
A
+
𝑜
z
↔
¬
A
+
𝑜
z
∈
B
41
40
con2bid
⊢
z
∈
On
→
A
+
𝑜
z
∈
B
↔
¬
B
⊆
A
+
𝑜
z
42
36
41
sylibrd
⊢
z
∈
On
→
z
∈
⋂
S
→
A
+
𝑜
z
∈
B
43
30
42
mpcom
⊢
z
∈
⋂
S
→
A
+
𝑜
z
∈
B
44
2
onordi
⊢
Ord
B
45
ordsucss
⊢
Ord
B
→
A
+
𝑜
z
∈
B
→
suc
A
+
𝑜
z
⊆
B
46
44
45
ax-mp
⊢
A
+
𝑜
z
∈
B
→
suc
A
+
𝑜
z
⊆
B
47
29
43
46
3syl
⊢
⋂
S
=
suc
z
→
suc
A
+
𝑜
z
⊆
B
48
47
adantl
⊢
z
∈
On
∧
⋂
S
=
suc
z
→
suc
A
+
𝑜
z
⊆
B
49
25
48
eqsstrd
⊢
z
∈
On
∧
⋂
S
=
suc
z
→
A
+
𝑜
⋂
S
⊆
B
50
49
rexlimiva
⊢
∃
z
∈
On
⋂
S
=
suc
z
→
A
+
𝑜
⋂
S
⊆
B
51
50
a1d
⊢
∃
z
∈
On
⋂
S
=
suc
z
→
A
⊆
B
→
A
+
𝑜
⋂
S
⊆
B
52
oalim
⊢
A
∈
On
∧
⋂
S
∈
V
∧
Lim
⋂
S
→
A
+
𝑜
⋂
S
=
⋃
z
∈
⋂
S
A
+
𝑜
z
53
1
52
mpan
⊢
⋂
S
∈
V
∧
Lim
⋂
S
→
A
+
𝑜
⋂
S
=
⋃
z
∈
⋂
S
A
+
𝑜
z
54
iunss
⊢
⋃
z
∈
⋂
S
A
+
𝑜
z
⊆
B
↔
∀
z
∈
⋂
S
A
+
𝑜
z
⊆
B
55
2
onelssi
⊢
A
+
𝑜
z
∈
B
→
A
+
𝑜
z
⊆
B
56
43
55
syl
⊢
z
∈
⋂
S
→
A
+
𝑜
z
⊆
B
57
54
56
mprgbir
⊢
⋃
z
∈
⋂
S
A
+
𝑜
z
⊆
B
58
53
57
eqsstrdi
⊢
⋂
S
∈
V
∧
Lim
⋂
S
→
A
+
𝑜
⋂
S
⊆
B
59
58
a1d
⊢
⋂
S
∈
V
∧
Lim
⋂
S
→
A
⊆
B
→
A
+
𝑜
⋂
S
⊆
B
60
21
51
59
3jaoi
⊢
⋂
S
=
∅
∨
∃
z
∈
On
⋂
S
=
suc
z
∨
⋂
S
∈
V
∧
Lim
⋂
S
→
A
⊆
B
→
A
+
𝑜
⋂
S
⊆
B
61
15
60
ax-mp
⊢
A
⊆
B
→
A
+
𝑜
⋂
S
⊆
B
62
8
rspcev
⊢
B
∈
On
∧
B
⊆
A
+
𝑜
B
→
∃
y
∈
On
B
⊆
A
+
𝑜
y
63
2
6
62
mp2an
⊢
∃
y
∈
On
B
⊆
A
+
𝑜
y
64
nfcv
⊢
Ⅎ
_
y
B
65
nfcv
⊢
Ⅎ
_
y
A
66
nfcv
⊢
Ⅎ
_
y
+
𝑜
67
nfrab1
⊢
Ⅎ
_
y
y
∈
On
|
B
⊆
A
+
𝑜
y
68
67
nfint
⊢
Ⅎ
_
y
⋂
y
∈
On
|
B
⊆
A
+
𝑜
y
69
65
66
68
nfov
⊢
Ⅎ
_
y
A
+
𝑜
⋂
y
∈
On
|
B
⊆
A
+
𝑜
y
70
64
69
nfss
⊢
Ⅎ
y
B
⊆
A
+
𝑜
⋂
y
∈
On
|
B
⊆
A
+
𝑜
y
71
oveq2
⊢
y
=
⋂
y
∈
On
|
B
⊆
A
+
𝑜
y
→
A
+
𝑜
y
=
A
+
𝑜
⋂
y
∈
On
|
B
⊆
A
+
𝑜
y
72
71
sseq2d
⊢
y
=
⋂
y
∈
On
|
B
⊆
A
+
𝑜
y
→
B
⊆
A
+
𝑜
y
↔
B
⊆
A
+
𝑜
⋂
y
∈
On
|
B
⊆
A
+
𝑜
y
73
70
72
onminsb
⊢
∃
y
∈
On
B
⊆
A
+
𝑜
y
→
B
⊆
A
+
𝑜
⋂
y
∈
On
|
B
⊆
A
+
𝑜
y
74
63
73
ax-mp
⊢
B
⊆
A
+
𝑜
⋂
y
∈
On
|
B
⊆
A
+
𝑜
y
75
31
oveq2i
⊢
A
+
𝑜
⋂
S
=
A
+
𝑜
⋂
y
∈
On
|
B
⊆
A
+
𝑜
y
76
74
75
sseqtrri
⊢
B
⊆
A
+
𝑜
⋂
S
77
eqss
⊢
A
+
𝑜
⋂
S
=
B
↔
A
+
𝑜
⋂
S
⊆
B
∧
B
⊆
A
+
𝑜
⋂
S
78
61
76
77
sylanblrc
⊢
A
⊆
B
→
A
+
𝑜
⋂
S
=
B
79
oveq2
⊢
x
=
⋂
S
→
A
+
𝑜
x
=
A
+
𝑜
⋂
S
80
79
eqeq1d
⊢
x
=
⋂
S
→
A
+
𝑜
x
=
B
↔
A
+
𝑜
⋂
S
=
B
81
80
rspcev
⊢
⋂
S
∈
On
∧
A
+
𝑜
⋂
S
=
B
→
∃
x
∈
On
A
+
𝑜
x
=
B
82
13
78
81
sylancr
⊢
A
⊆
B
→
∃
x
∈
On
A
+
𝑜
x
=
B
83
eqtr3
⊢
A
+
𝑜
x
=
B
∧
A
+
𝑜
y
=
B
→
A
+
𝑜
x
=
A
+
𝑜
y
84
oacan
⊢
A
∈
On
∧
x
∈
On
∧
y
∈
On
→
A
+
𝑜
x
=
A
+
𝑜
y
↔
x
=
y
85
1
84
mp3an1
⊢
x
∈
On
∧
y
∈
On
→
A
+
𝑜
x
=
A
+
𝑜
y
↔
x
=
y
86
83
85
imbitrid
⊢
x
∈
On
∧
y
∈
On
→
A
+
𝑜
x
=
B
∧
A
+
𝑜
y
=
B
→
x
=
y
87
86
rgen2
⊢
∀
x
∈
On
∀
y
∈
On
A
+
𝑜
x
=
B
∧
A
+
𝑜
y
=
B
→
x
=
y
88
oveq2
⊢
x
=
y
→
A
+
𝑜
x
=
A
+
𝑜
y
89
88
eqeq1d
⊢
x
=
y
→
A
+
𝑜
x
=
B
↔
A
+
𝑜
y
=
B
90
89
reu4
⊢
∃!
x
∈
On
A
+
𝑜
x
=
B
↔
∃
x
∈
On
A
+
𝑜
x
=
B
∧
∀
x
∈
On
∀
y
∈
On
A
+
𝑜
x
=
B
∧
A
+
𝑜
y
=
B
→
x
=
y
91
82
87
90
sylanblrc
⊢
A
⊆
B
→
∃!
x
∈
On
A
+
𝑜
x
=
B