Metamath Proof Explorer


Theorem oawordeulem

Description: Lemma for oawordex . (Contributed by NM, 11-Dec-2004)

Ref Expression
Hypotheses oawordeulem.1 AOn
oawordeulem.2 BOn
oawordeulem.3 S=yOn|BA+𝑜y
Assertion oawordeulem AB∃!xOnA+𝑜x=B

Proof

Step Hyp Ref Expression
1 oawordeulem.1 AOn
2 oawordeulem.2 BOn
3 oawordeulem.3 S=yOn|BA+𝑜y
4 3 ssrab3 SOn
5 oaword2 BOnAOnBA+𝑜B
6 2 1 5 mp2an BA+𝑜B
7 oveq2 y=BA+𝑜y=A+𝑜B
8 7 sseq2d y=BBA+𝑜yBA+𝑜B
9 8 3 elrab2 BSBOnBA+𝑜B
10 2 6 9 mpbir2an BS
11 10 ne0ii S
12 oninton SOnSSOn
13 4 11 12 mp2an SOn
14 onzsl SOnS=zOnS=suczSVLimS
15 13 14 mpbi S=zOnS=suczSVLimS
16 oveq2 S=A+𝑜S=A+𝑜
17 oa0 AOnA+𝑜=A
18 1 17 ax-mp A+𝑜=A
19 16 18 eqtrdi S=A+𝑜S=A
20 19 sseq1d S=A+𝑜SBAB
21 20 biimprd S=ABA+𝑜SB
22 oveq2 S=suczA+𝑜S=A+𝑜sucz
23 oasuc AOnzOnA+𝑜sucz=sucA+𝑜z
24 1 23 mpan zOnA+𝑜sucz=sucA+𝑜z
25 22 24 sylan9eqr zOnS=suczA+𝑜S=sucA+𝑜z
26 vex zV
27 26 sucid zsucz
28 eleq2 S=suczzSzsucz
29 27 28 mpbiri S=suczzS
30 13 oneli zSzOn
31 3 inteqi S=yOn|BA+𝑜y
32 31 eleq2i zSzyOn|BA+𝑜y
33 oveq2 y=zA+𝑜y=A+𝑜z
34 33 sseq2d y=zBA+𝑜yBA+𝑜z
35 34 onnminsb zOnzyOn|BA+𝑜y¬BA+𝑜z
36 32 35 biimtrid zOnzS¬BA+𝑜z
37 oacl AOnzOnA+𝑜zOn
38 1 37 mpan zOnA+𝑜zOn
39 ontri1 BOnA+𝑜zOnBA+𝑜z¬A+𝑜zB
40 2 38 39 sylancr zOnBA+𝑜z¬A+𝑜zB
41 40 con2bid zOnA+𝑜zB¬BA+𝑜z
42 36 41 sylibrd zOnzSA+𝑜zB
43 30 42 mpcom zSA+𝑜zB
44 2 onordi OrdB
45 ordsucss OrdBA+𝑜zBsucA+𝑜zB
46 44 45 ax-mp A+𝑜zBsucA+𝑜zB
47 29 43 46 3syl S=suczsucA+𝑜zB
48 47 adantl zOnS=suczsucA+𝑜zB
49 25 48 eqsstrd zOnS=suczA+𝑜SB
50 49 rexlimiva zOnS=suczA+𝑜SB
51 50 a1d zOnS=suczABA+𝑜SB
52 oalim AOnSVLimSA+𝑜S=zSA+𝑜z
53 1 52 mpan SVLimSA+𝑜S=zSA+𝑜z
54 iunss zSA+𝑜zBzSA+𝑜zB
55 2 onelssi A+𝑜zBA+𝑜zB
56 43 55 syl zSA+𝑜zB
57 54 56 mprgbir zSA+𝑜zB
58 53 57 eqsstrdi SVLimSA+𝑜SB
59 58 a1d SVLimSABA+𝑜SB
60 21 51 59 3jaoi S=zOnS=suczSVLimSABA+𝑜SB
61 15 60 ax-mp ABA+𝑜SB
62 8 rspcev BOnBA+𝑜ByOnBA+𝑜y
63 2 6 62 mp2an yOnBA+𝑜y
64 nfcv _yB
65 nfcv _yA
66 nfcv _y+𝑜
67 nfrab1 _yyOn|BA+𝑜y
68 67 nfint _yyOn|BA+𝑜y
69 65 66 68 nfov _yA+𝑜yOn|BA+𝑜y
70 64 69 nfss yBA+𝑜yOn|BA+𝑜y
71 oveq2 y=yOn|BA+𝑜yA+𝑜y=A+𝑜yOn|BA+𝑜y
72 71 sseq2d y=yOn|BA+𝑜yBA+𝑜yBA+𝑜yOn|BA+𝑜y
73 70 72 onminsb yOnBA+𝑜yBA+𝑜yOn|BA+𝑜y
74 63 73 ax-mp BA+𝑜yOn|BA+𝑜y
75 31 oveq2i A+𝑜S=A+𝑜yOn|BA+𝑜y
76 74 75 sseqtrri BA+𝑜S
77 eqss A+𝑜S=BA+𝑜SBBA+𝑜S
78 61 76 77 sylanblrc ABA+𝑜S=B
79 oveq2 x=SA+𝑜x=A+𝑜S
80 79 eqeq1d x=SA+𝑜x=BA+𝑜S=B
81 80 rspcev SOnA+𝑜S=BxOnA+𝑜x=B
82 13 78 81 sylancr ABxOnA+𝑜x=B
83 eqtr3 A+𝑜x=BA+𝑜y=BA+𝑜x=A+𝑜y
84 oacan AOnxOnyOnA+𝑜x=A+𝑜yx=y
85 1 84 mp3an1 xOnyOnA+𝑜x=A+𝑜yx=y
86 83 85 imbitrid xOnyOnA+𝑜x=BA+𝑜y=Bx=y
87 86 rgen2 xOnyOnA+𝑜x=BA+𝑜y=Bx=y
88 oveq2 x=yA+𝑜x=A+𝑜y
89 88 eqeq1d x=yA+𝑜x=BA+𝑜y=B
90 89 reu4 ∃!xOnA+𝑜x=BxOnA+𝑜x=BxOnyOnA+𝑜x=BA+𝑜y=Bx=y
91 82 87 90 sylanblrc AB∃!xOnA+𝑜x=B