Metamath Proof Explorer


Theorem obslbs

Description: An orthogonal basis is a linear basis iff the span of the basis elements is closed (which is usually not true). (Contributed by Mario Carneiro, 29-Oct-2015)

Ref Expression
Hypotheses obslbs.j J = LBasis W
obslbs.n N = LSpan W
obslbs.c C = ClSubSp W
Assertion obslbs B OBasis W B J N B C

Proof

Step Hyp Ref Expression
1 obslbs.j J = LBasis W
2 obslbs.n N = LSpan W
3 obslbs.c C = ClSubSp W
4 obsrcl B OBasis W W PreHil
5 eqid Base W = Base W
6 5 obsss B OBasis W B Base W
7 eqid ocv W = ocv W
8 5 7 2 ocvlsp W PreHil B Base W ocv W N B = ocv W B
9 4 6 8 syl2anc B OBasis W ocv W N B = ocv W B
10 9 fveq2d B OBasis W ocv W ocv W N B = ocv W ocv W B
11 7 5 obs2ocv B OBasis W ocv W ocv W B = Base W
12 10 11 eqtrd B OBasis W ocv W ocv W N B = Base W
13 12 eqeq2d B OBasis W N B = ocv W ocv W N B N B = Base W
14 7 3 iscss W PreHil N B C N B = ocv W ocv W N B
15 4 14 syl B OBasis W N B C N B = ocv W ocv W N B
16 phllvec W PreHil W LVec
17 4 16 syl B OBasis W W LVec
18 pssnel x B y y B ¬ y x
19 18 adantl B OBasis W x B y y B ¬ y x
20 simpll B OBasis W x B y B B OBasis W
21 pssss x B x B
22 21 ad2antlr B OBasis W x B y B x B
23 simpr B OBasis W x B y B y B
24 7 obselocv B OBasis W x B y B y ocv W x ¬ y x
25 20 22 23 24 syl3anc B OBasis W x B y B y ocv W x ¬ y x
26 eqid 0 W = 0 W
27 26 obsne0 B OBasis W y B y 0 W
28 20 23 27 syl2anc B OBasis W x B y B y 0 W
29 nelsn y 0 W ¬ y 0 W
30 28 29 syl B OBasis W x B y B ¬ y 0 W
31 nelne1 y ocv W x ¬ y 0 W ocv W x 0 W
32 31 expcom ¬ y 0 W y ocv W x ocv W x 0 W
33 30 32 syl B OBasis W x B y B y ocv W x ocv W x 0 W
34 25 33 sylbird B OBasis W x B y B ¬ y x ocv W x 0 W
35 npss ¬ N x Base W N x Base W N x = Base W
36 phllmod W PreHil W LMod
37 4 36 syl B OBasis W W LMod
38 37 ad2antrr B OBasis W x B y B W LMod
39 6 ad2antrr B OBasis W x B y B B Base W
40 22 39 sstrd B OBasis W x B y B x Base W
41 5 2 lspssv W LMod x Base W N x Base W
42 38 40 41 syl2anc B OBasis W x B y B N x Base W
43 fveq2 N x = Base W ocv W N x = ocv W Base W
44 4 ad2antrr B OBasis W x B y B W PreHil
45 5 7 2 ocvlsp W PreHil x Base W ocv W N x = ocv W x
46 44 40 45 syl2anc B OBasis W x B y B ocv W N x = ocv W x
47 5 7 26 ocv1 W PreHil ocv W Base W = 0 W
48 44 47 syl B OBasis W x B y B ocv W Base W = 0 W
49 46 48 eqeq12d B OBasis W x B y B ocv W N x = ocv W Base W ocv W x = 0 W
50 43 49 syl5ib B OBasis W x B y B N x = Base W ocv W x = 0 W
51 42 50 embantd B OBasis W x B y B N x Base W N x = Base W ocv W x = 0 W
52 35 51 syl5bi B OBasis W x B y B ¬ N x Base W ocv W x = 0 W
53 52 necon1ad B OBasis W x B y B ocv W x 0 W N x Base W
54 34 53 syld B OBasis W x B y B ¬ y x N x Base W
55 54 expimpd B OBasis W x B y B ¬ y x N x Base W
56 55 exlimdv B OBasis W x B y y B ¬ y x N x Base W
57 19 56 mpd B OBasis W x B N x Base W
58 57 ex B OBasis W x B N x Base W
59 58 alrimiv B OBasis W x x B N x Base W
60 5 1 2 islbs3 W LVec B J B Base W N B = Base W x x B N x Base W
61 3anan32 B Base W N B = Base W x x B N x Base W B Base W x x B N x Base W N B = Base W
62 60 61 bitrdi W LVec B J B Base W x x B N x Base W N B = Base W
63 62 baibd W LVec B Base W x x B N x Base W B J N B = Base W
64 17 6 59 63 syl12anc B OBasis W B J N B = Base W
65 13 15 64 3bitr4rd B OBasis W B J N B C