Metamath Proof Explorer


Theorem obslbs

Description: An orthogonal basis is a linear basis iff the span of the basis elements is closed (which is usually not true). (Contributed by Mario Carneiro, 29-Oct-2015)

Ref Expression
Hypotheses obslbs.j J=LBasisW
obslbs.n N=LSpanW
obslbs.c C=ClSubSpW
Assertion obslbs BOBasisWBJNBC

Proof

Step Hyp Ref Expression
1 obslbs.j J=LBasisW
2 obslbs.n N=LSpanW
3 obslbs.c C=ClSubSpW
4 obsrcl BOBasisWWPreHil
5 eqid BaseW=BaseW
6 5 obsss BOBasisWBBaseW
7 eqid ocvW=ocvW
8 5 7 2 ocvlsp WPreHilBBaseWocvWNB=ocvWB
9 4 6 8 syl2anc BOBasisWocvWNB=ocvWB
10 9 fveq2d BOBasisWocvWocvWNB=ocvWocvWB
11 7 5 obs2ocv BOBasisWocvWocvWB=BaseW
12 10 11 eqtrd BOBasisWocvWocvWNB=BaseW
13 12 eqeq2d BOBasisWNB=ocvWocvWNBNB=BaseW
14 7 3 iscss WPreHilNBCNB=ocvWocvWNB
15 4 14 syl BOBasisWNBCNB=ocvWocvWNB
16 phllvec WPreHilWLVec
17 4 16 syl BOBasisWWLVec
18 pssnel xByyB¬yx
19 18 adantl BOBasisWxByyB¬yx
20 simpll BOBasisWxByBBOBasisW
21 pssss xBxB
22 21 ad2antlr BOBasisWxByBxB
23 simpr BOBasisWxByByB
24 7 obselocv BOBasisWxByByocvWx¬yx
25 20 22 23 24 syl3anc BOBasisWxByByocvWx¬yx
26 eqid 0W=0W
27 26 obsne0 BOBasisWyBy0W
28 20 23 27 syl2anc BOBasisWxByBy0W
29 nelsn y0W¬y0W
30 28 29 syl BOBasisWxByB¬y0W
31 nelne1 yocvWx¬y0WocvWx0W
32 31 expcom ¬y0WyocvWxocvWx0W
33 30 32 syl BOBasisWxByByocvWxocvWx0W
34 25 33 sylbird BOBasisWxByB¬yxocvWx0W
35 npss ¬NxBaseWNxBaseWNx=BaseW
36 phllmod WPreHilWLMod
37 4 36 syl BOBasisWWLMod
38 37 ad2antrr BOBasisWxByBWLMod
39 6 ad2antrr BOBasisWxByBBBaseW
40 22 39 sstrd BOBasisWxByBxBaseW
41 5 2 lspssv WLModxBaseWNxBaseW
42 38 40 41 syl2anc BOBasisWxByBNxBaseW
43 fveq2 Nx=BaseWocvWNx=ocvWBaseW
44 4 ad2antrr BOBasisWxByBWPreHil
45 5 7 2 ocvlsp WPreHilxBaseWocvWNx=ocvWx
46 44 40 45 syl2anc BOBasisWxByBocvWNx=ocvWx
47 5 7 26 ocv1 WPreHilocvWBaseW=0W
48 44 47 syl BOBasisWxByBocvWBaseW=0W
49 46 48 eqeq12d BOBasisWxByBocvWNx=ocvWBaseWocvWx=0W
50 43 49 imbitrid BOBasisWxByBNx=BaseWocvWx=0W
51 42 50 embantd BOBasisWxByBNxBaseWNx=BaseWocvWx=0W
52 35 51 biimtrid BOBasisWxByB¬NxBaseWocvWx=0W
53 52 necon1ad BOBasisWxByBocvWx0WNxBaseW
54 34 53 syld BOBasisWxByB¬yxNxBaseW
55 54 expimpd BOBasisWxByB¬yxNxBaseW
56 55 exlimdv BOBasisWxByyB¬yxNxBaseW
57 19 56 mpd BOBasisWxBNxBaseW
58 57 ex BOBasisWxBNxBaseW
59 58 alrimiv BOBasisWxxBNxBaseW
60 5 1 2 islbs3 WLVecBJBBaseWNB=BaseWxxBNxBaseW
61 3anan32 BBaseWNB=BaseWxxBNxBaseWBBaseWxxBNxBaseWNB=BaseW
62 60 61 bitrdi WLVecBJBBaseWxxBNxBaseWNB=BaseW
63 62 baibd WLVecBBaseWxxBNxBaseWBJNB=BaseW
64 17 6 59 63 syl12anc BOBasisWBJNB=BaseW
65 13 15 64 3bitr4rd BOBasisWBJNBC