Description: An orthogonal basis is a linear basis iff the span of the basis elements is closed (which is usually not true). (Contributed by Mario Carneiro, 29-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | obslbs.j | |
|
obslbs.n | |
||
obslbs.c | |
||
Assertion | obslbs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | obslbs.j | |
|
2 | obslbs.n | |
|
3 | obslbs.c | |
|
4 | obsrcl | |
|
5 | eqid | |
|
6 | 5 | obsss | |
7 | eqid | |
|
8 | 5 7 2 | ocvlsp | |
9 | 4 6 8 | syl2anc | |
10 | 9 | fveq2d | |
11 | 7 5 | obs2ocv | |
12 | 10 11 | eqtrd | |
13 | 12 | eqeq2d | |
14 | 7 3 | iscss | |
15 | 4 14 | syl | |
16 | phllvec | |
|
17 | 4 16 | syl | |
18 | pssnel | |
|
19 | 18 | adantl | |
20 | simpll | |
|
21 | pssss | |
|
22 | 21 | ad2antlr | |
23 | simpr | |
|
24 | 7 | obselocv | |
25 | 20 22 23 24 | syl3anc | |
26 | eqid | |
|
27 | 26 | obsne0 | |
28 | 20 23 27 | syl2anc | |
29 | nelsn | |
|
30 | 28 29 | syl | |
31 | nelne1 | |
|
32 | 31 | expcom | |
33 | 30 32 | syl | |
34 | 25 33 | sylbird | |
35 | npss | |
|
36 | phllmod | |
|
37 | 4 36 | syl | |
38 | 37 | ad2antrr | |
39 | 6 | ad2antrr | |
40 | 22 39 | sstrd | |
41 | 5 2 | lspssv | |
42 | 38 40 41 | syl2anc | |
43 | fveq2 | |
|
44 | 4 | ad2antrr | |
45 | 5 7 2 | ocvlsp | |
46 | 44 40 45 | syl2anc | |
47 | 5 7 26 | ocv1 | |
48 | 44 47 | syl | |
49 | 46 48 | eqeq12d | |
50 | 43 49 | imbitrid | |
51 | 42 50 | embantd | |
52 | 35 51 | biimtrid | |
53 | 52 | necon1ad | |
54 | 34 53 | syld | |
55 | 54 | expimpd | |
56 | 55 | exlimdv | |
57 | 19 56 | mpd | |
58 | 57 | ex | |
59 | 58 | alrimiv | |
60 | 5 1 2 | islbs3 | |
61 | 3anan32 | |
|
62 | 60 61 | bitrdi | |
63 | 62 | baibd | |
64 | 17 6 59 63 | syl12anc | |
65 | 13 15 64 | 3bitr4rd | |