Metamath Proof Explorer


Theorem ocvlss

Description: The orthocomplement of a subset is a linear subspace of the pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ocvss.v V=BaseW
ocvss.o ˙=ocvW
ocvlss.l L=LSubSpW
Assertion ocvlss WPreHilSV˙SL

Proof

Step Hyp Ref Expression
1 ocvss.v V=BaseW
2 ocvss.o ˙=ocvW
3 ocvlss.l L=LSubSpW
4 1 2 ocvss ˙SV
5 4 a1i WPreHilSV˙SV
6 simpr WPreHilSVSV
7 phllmod WPreHilWLMod
8 7 adantr WPreHilSVWLMod
9 eqid 0W=0W
10 1 9 lmod0vcl WLMod0WV
11 8 10 syl WPreHilSV0WV
12 simpll WPreHilSVxSWPreHil
13 6 sselda WPreHilSVxSxV
14 eqid ScalarW=ScalarW
15 eqid 𝑖W=𝑖W
16 eqid 0ScalarW=0ScalarW
17 14 15 1 16 9 ip0l WPreHilxV0W𝑖Wx=0ScalarW
18 12 13 17 syl2anc WPreHilSVxS0W𝑖Wx=0ScalarW
19 18 ralrimiva WPreHilSVxS0W𝑖Wx=0ScalarW
20 1 15 14 16 2 elocv 0W˙SSV0WVxS0W𝑖Wx=0ScalarW
21 6 11 19 20 syl3anbrc WPreHilSV0W˙S
22 21 ne0d WPreHilSV˙S
23 6 adantr WPreHilSVrBaseScalarWy˙Sz˙SSV
24 8 adantr WPreHilSVrBaseScalarWy˙Sz˙SWLMod
25 simpr1 WPreHilSVrBaseScalarWy˙Sz˙SrBaseScalarW
26 simpr2 WPreHilSVrBaseScalarWy˙Sz˙Sy˙S
27 4 26 sselid WPreHilSVrBaseScalarWy˙Sz˙SyV
28 eqid W=W
29 eqid BaseScalarW=BaseScalarW
30 1 14 28 29 lmodvscl WLModrBaseScalarWyVrWyV
31 24 25 27 30 syl3anc WPreHilSVrBaseScalarWy˙Sz˙SrWyV
32 simpr3 WPreHilSVrBaseScalarWy˙Sz˙Sz˙S
33 4 32 sselid WPreHilSVrBaseScalarWy˙Sz˙SzV
34 eqid +W=+W
35 1 34 lmodvacl WLModrWyVzVrWy+WzV
36 24 31 33 35 syl3anc WPreHilSVrBaseScalarWy˙Sz˙SrWy+WzV
37 12 adantlr WPreHilSVrBaseScalarWy˙Sz˙SxSWPreHil
38 31 adantr WPreHilSVrBaseScalarWy˙Sz˙SxSrWyV
39 33 adantr WPreHilSVrBaseScalarWy˙Sz˙SxSzV
40 13 adantlr WPreHilSVrBaseScalarWy˙Sz˙SxSxV
41 eqid +ScalarW=+ScalarW
42 14 15 1 34 41 ipdir WPreHilrWyVzVxVrWy+Wz𝑖Wx=rWy𝑖Wx+ScalarWz𝑖Wx
43 37 38 39 40 42 syl13anc WPreHilSVrBaseScalarWy˙Sz˙SxSrWy+Wz𝑖Wx=rWy𝑖Wx+ScalarWz𝑖Wx
44 25 adantr WPreHilSVrBaseScalarWy˙Sz˙SxSrBaseScalarW
45 27 adantr WPreHilSVrBaseScalarWy˙Sz˙SxSyV
46 eqid ScalarW=ScalarW
47 14 15 1 29 28 46 ipass WPreHilrBaseScalarWyVxVrWy𝑖Wx=rScalarWy𝑖Wx
48 37 44 45 40 47 syl13anc WPreHilSVrBaseScalarWy˙Sz˙SxSrWy𝑖Wx=rScalarWy𝑖Wx
49 1 15 14 16 2 ocvi y˙SxSy𝑖Wx=0ScalarW
50 26 49 sylan WPreHilSVrBaseScalarWy˙Sz˙SxSy𝑖Wx=0ScalarW
51 50 oveq2d WPreHilSVrBaseScalarWy˙Sz˙SxSrScalarWy𝑖Wx=rScalarW0ScalarW
52 24 adantr WPreHilSVrBaseScalarWy˙Sz˙SxSWLMod
53 14 lmodring WLModScalarWRing
54 52 53 syl WPreHilSVrBaseScalarWy˙Sz˙SxSScalarWRing
55 29 46 16 ringrz ScalarWRingrBaseScalarWrScalarW0ScalarW=0ScalarW
56 54 44 55 syl2anc WPreHilSVrBaseScalarWy˙Sz˙SxSrScalarW0ScalarW=0ScalarW
57 48 51 56 3eqtrd WPreHilSVrBaseScalarWy˙Sz˙SxSrWy𝑖Wx=0ScalarW
58 1 15 14 16 2 ocvi z˙SxSz𝑖Wx=0ScalarW
59 32 58 sylan WPreHilSVrBaseScalarWy˙Sz˙SxSz𝑖Wx=0ScalarW
60 57 59 oveq12d WPreHilSVrBaseScalarWy˙Sz˙SxSrWy𝑖Wx+ScalarWz𝑖Wx=0ScalarW+ScalarW0ScalarW
61 14 lmodfgrp WLModScalarWGrp
62 29 16 grpidcl ScalarWGrp0ScalarWBaseScalarW
63 29 41 16 grplid ScalarWGrp0ScalarWBaseScalarW0ScalarW+ScalarW0ScalarW=0ScalarW
64 62 63 mpdan ScalarWGrp0ScalarW+ScalarW0ScalarW=0ScalarW
65 52 61 64 3syl WPreHilSVrBaseScalarWy˙Sz˙SxS0ScalarW+ScalarW0ScalarW=0ScalarW
66 43 60 65 3eqtrd WPreHilSVrBaseScalarWy˙Sz˙SxSrWy+Wz𝑖Wx=0ScalarW
67 66 ralrimiva WPreHilSVrBaseScalarWy˙Sz˙SxSrWy+Wz𝑖Wx=0ScalarW
68 1 15 14 16 2 elocv rWy+Wz˙SSVrWy+WzVxSrWy+Wz𝑖Wx=0ScalarW
69 23 36 67 68 syl3anbrc WPreHilSVrBaseScalarWy˙Sz˙SrWy+Wz˙S
70 69 ralrimivvva WPreHilSVrBaseScalarWy˙Sz˙SrWy+Wz˙S
71 14 29 1 34 28 3 islss ˙SL˙SV˙SrBaseScalarWy˙Sz˙SrWy+Wz˙S
72 5 22 70 71 syl3anbrc WPreHilSV˙SL