Metamath Proof Explorer


Theorem oewordri

Description: Weak ordering property of ordinal exponentiation. Proposition 8.35 of TakeutiZaring p. 68. (Contributed by NM, 6-Jan-2005)

Ref Expression
Assertion oewordri BOnCOnABA𝑜CB𝑜C

Proof

Step Hyp Ref Expression
1 oveq2 x=A𝑜x=A𝑜
2 oveq2 x=B𝑜x=B𝑜
3 1 2 sseq12d x=A𝑜xB𝑜xA𝑜B𝑜
4 oveq2 x=yA𝑜x=A𝑜y
5 oveq2 x=yB𝑜x=B𝑜y
6 4 5 sseq12d x=yA𝑜xB𝑜xA𝑜yB𝑜y
7 oveq2 x=sucyA𝑜x=A𝑜sucy
8 oveq2 x=sucyB𝑜x=B𝑜sucy
9 7 8 sseq12d x=sucyA𝑜xB𝑜xA𝑜sucyB𝑜sucy
10 oveq2 x=CA𝑜x=A𝑜C
11 oveq2 x=CB𝑜x=B𝑜C
12 10 11 sseq12d x=CA𝑜xB𝑜xA𝑜CB𝑜C
13 onelon BOnABAOn
14 oe0 AOnA𝑜=1𝑜
15 13 14 syl BOnABA𝑜=1𝑜
16 oe0 BOnB𝑜=1𝑜
17 16 adantr BOnABB𝑜=1𝑜
18 15 17 eqtr4d BOnABA𝑜=B𝑜
19 eqimss A𝑜=B𝑜A𝑜B𝑜
20 18 19 syl BOnABA𝑜B𝑜
21 simpl BOnABBOn
22 onelss BOnABAB
23 22 imp BOnABAB
24 13 21 23 jca31 BOnABAOnBOnAB
25 oecl AOnyOnA𝑜yOn
26 25 3adant2 AOnBOnyOnA𝑜yOn
27 oecl BOnyOnB𝑜yOn
28 27 3adant1 AOnBOnyOnB𝑜yOn
29 simp1 AOnBOnyOnAOn
30 omwordri A𝑜yOnB𝑜yOnAOnA𝑜yB𝑜yA𝑜y𝑜AB𝑜y𝑜A
31 26 28 29 30 syl3anc AOnBOnyOnA𝑜yB𝑜yA𝑜y𝑜AB𝑜y𝑜A
32 31 imp AOnBOnyOnA𝑜yB𝑜yA𝑜y𝑜AB𝑜y𝑜A
33 32 adantrl AOnBOnyOnABA𝑜yB𝑜yA𝑜y𝑜AB𝑜y𝑜A
34 omwordi AOnBOnB𝑜yOnABB𝑜y𝑜AB𝑜y𝑜B
35 28 34 syld3an3 AOnBOnyOnABB𝑜y𝑜AB𝑜y𝑜B
36 35 imp AOnBOnyOnABB𝑜y𝑜AB𝑜y𝑜B
37 36 adantrr AOnBOnyOnABA𝑜yB𝑜yB𝑜y𝑜AB𝑜y𝑜B
38 33 37 sstrd AOnBOnyOnABA𝑜yB𝑜yA𝑜y𝑜AB𝑜y𝑜B
39 oesuc AOnyOnA𝑜sucy=A𝑜y𝑜A
40 39 3adant2 AOnBOnyOnA𝑜sucy=A𝑜y𝑜A
41 40 adantr AOnBOnyOnABA𝑜yB𝑜yA𝑜sucy=A𝑜y𝑜A
42 oesuc BOnyOnB𝑜sucy=B𝑜y𝑜B
43 42 3adant1 AOnBOnyOnB𝑜sucy=B𝑜y𝑜B
44 43 adantr AOnBOnyOnABA𝑜yB𝑜yB𝑜sucy=B𝑜y𝑜B
45 38 41 44 3sstr4d AOnBOnyOnABA𝑜yB𝑜yA𝑜sucyB𝑜sucy
46 45 exp520 AOnBOnyOnABA𝑜yB𝑜yA𝑜sucyB𝑜sucy
47 46 com3r yOnAOnBOnABA𝑜yB𝑜yA𝑜sucyB𝑜sucy
48 47 imp4c yOnAOnBOnABA𝑜yB𝑜yA𝑜sucyB𝑜sucy
49 24 48 syl5 yOnBOnABA𝑜yB𝑜yA𝑜sucyB𝑜sucy
50 vex xV
51 limelon xVLimxxOn
52 50 51 mpan LimxxOn
53 0ellim Limxx
54 oe0m1 xOnx𝑜x=
55 54 biimpa xOnx𝑜x=
56 52 53 55 syl2anc Limx𝑜x=
57 0ss B𝑜x
58 56 57 eqsstrdi Limx𝑜xB𝑜x
59 oveq1 A=A𝑜x=𝑜x
60 59 sseq1d A=A𝑜xB𝑜x𝑜xB𝑜x
61 58 60 imbitrrid A=LimxA𝑜xB𝑜x
62 61 adantl BOnABA=LimxA𝑜xB𝑜x
63 62 a1dd BOnABA=LimxyxA𝑜yB𝑜yA𝑜xB𝑜x
64 ss2iun yxA𝑜yB𝑜yyxA𝑜yyxB𝑜y
65 oelim AOnxVLimxAA𝑜x=yxA𝑜y
66 50 65 mpanlr1 AOnLimxAA𝑜x=yxA𝑜y
67 66 an32s AOnALimxA𝑜x=yxA𝑜y
68 67 adantllr AOnBOnABALimxA𝑜x=yxA𝑜y
69 21 anim1i BOnABLimxBOnLimx
70 ne0i ABB
71 on0eln0 BOnBB
72 70 71 imbitrrid BOnABB
73 72 imp BOnABB
74 73 adantr BOnABLimxB
75 oelim BOnxVLimxBB𝑜x=yxB𝑜y
76 50 75 mpanlr1 BOnLimxBB𝑜x=yxB𝑜y
77 69 74 76 syl2anc BOnABLimxB𝑜x=yxB𝑜y
78 77 ad4ant24 AOnBOnABALimxB𝑜x=yxB𝑜y
79 68 78 sseq12d AOnBOnABALimxA𝑜xB𝑜xyxA𝑜yyxB𝑜y
80 64 79 imbitrrid AOnBOnABALimxyxA𝑜yB𝑜yA𝑜xB𝑜x
81 80 ex AOnBOnABALimxyxA𝑜yB𝑜yA𝑜xB𝑜x
82 63 81 oe0lem AOnBOnABLimxyxA𝑜yB𝑜yA𝑜xB𝑜x
83 13 ancri BOnABAOnBOnAB
84 82 83 syl11 LimxBOnAByxA𝑜yB𝑜yA𝑜xB𝑜x
85 3 6 9 12 20 49 84 tfinds3 COnBOnABA𝑜CB𝑜C
86 85 expd COnBOnABA𝑜CB𝑜C
87 86 impcom BOnCOnABA𝑜CB𝑜C