| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2noseq.1 |
|
| 2 |
|
om2noseq.2 |
|
| 3 |
|
om2noseq.3 |
|
| 4 |
|
nnaordex2 |
|
| 5 |
4
|
adantl |
|
| 6 |
|
suceq |
|
| 7 |
|
df-1o |
|
| 8 |
6 7
|
eqtr4di |
|
| 9 |
8
|
oveq2d |
|
| 10 |
9
|
fveq2d |
|
| 11 |
10
|
breq2d |
|
| 12 |
|
suceq |
|
| 13 |
12
|
oveq2d |
|
| 14 |
13
|
fveq2d |
|
| 15 |
14
|
breq2d |
|
| 16 |
|
suceq |
|
| 17 |
16
|
oveq2d |
|
| 18 |
17
|
fveq2d |
|
| 19 |
18
|
breq2d |
|
| 20 |
1 2 3
|
om2noseqfo |
|
| 21 |
|
fof |
|
| 22 |
20 21
|
syl |
|
| 23 |
3 1
|
noseqssno |
|
| 24 |
22 23
|
fssd |
|
| 25 |
24
|
ffvelcdmda |
|
| 26 |
25
|
addsridd |
|
| 27 |
|
0slt1s |
|
| 28 |
|
0sno |
|
| 29 |
28
|
a1i |
|
| 30 |
|
1sno |
|
| 31 |
30
|
a1i |
|
| 32 |
29 31 25
|
sltadd2d |
|
| 33 |
27 32
|
mpbii |
|
| 34 |
26 33
|
eqbrtrrd |
|
| 35 |
|
nnon |
|
| 36 |
|
oa1suc |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
fveq2d |
|
| 39 |
38
|
adantl |
|
| 40 |
1
|
adantr |
|
| 41 |
2
|
adantr |
|
| 42 |
|
simpr |
|
| 43 |
40 41 42
|
om2noseqsuc |
|
| 44 |
39 43
|
eqtrd |
|
| 45 |
34 44
|
breqtrrd |
|
| 46 |
25
|
adantr |
|
| 47 |
24
|
ad2antrr |
|
| 48 |
|
peano2 |
|
| 49 |
48
|
adantr |
|
| 50 |
|
nnacl |
|
| 51 |
42 49 50
|
syl2an |
|
| 52 |
47 51
|
ffvelcdmd |
|
| 53 |
|
peano2 |
|
| 54 |
48 53
|
syl |
|
| 55 |
54
|
adantr |
|
| 56 |
|
nnacl |
|
| 57 |
42 55 56
|
syl2an |
|
| 58 |
47 57
|
ffvelcdmd |
|
| 59 |
|
simprr |
|
| 60 |
52
|
addsridd |
|
| 61 |
28
|
a1i |
|
| 62 |
30
|
a1i |
|
| 63 |
61 62 52
|
sltadd2d |
|
| 64 |
27 63
|
mpbii |
|
| 65 |
60 64
|
eqbrtrrd |
|
| 66 |
|
nnasuc |
|
| 67 |
66
|
fveq2d |
|
| 68 |
42 49 67
|
syl2an |
|
| 69 |
1
|
ad2antrr |
|
| 70 |
2
|
ad2antrr |
|
| 71 |
69 70 51
|
om2noseqsuc |
|
| 72 |
68 71
|
eqtrd |
|
| 73 |
65 72
|
breqtrrd |
|
| 74 |
46 52 58 59 73
|
slttrd |
|
| 75 |
74
|
expr |
|
| 76 |
75
|
expcom |
|
| 77 |
11 15 19 45 76
|
finds2 |
|
| 78 |
77
|
impcom |
|
| 79 |
|
fveq2 |
|
| 80 |
79
|
breq2d |
|
| 81 |
78 80
|
syl5ibcom |
|
| 82 |
81
|
rexlimdva |
|
| 83 |
82
|
adantrr |
|
| 84 |
5 83
|
sylbid |
|