Metamath Proof Explorer


Theorem oppccatid

Description: Lemma for oppccat . (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypothesis oppcbas.1 O=oppCatC
Assertion oppccatid CCatOCatIdO=IdC

Proof

Step Hyp Ref Expression
1 oppcbas.1 O=oppCatC
2 eqid BaseC=BaseC
3 1 2 oppcbas BaseC=BaseO
4 3 a1i CCatBaseC=BaseO
5 eqidd CCatHomO=HomO
6 eqidd CCatcompO=compO
7 1 fvexi OV
8 7 a1i CCatOV
9 biid xBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOw
10 eqid HomC=HomC
11 eqid IdC=IdC
12 simpl CCatyBaseCCCat
13 simpr CCatyBaseCyBaseC
14 2 10 11 12 13 catidcl CCatyBaseCIdCyyHomCy
15 10 1 oppchom yHomOy=yHomCy
16 14 15 eleqtrrdi CCatyBaseCIdCyyHomOy
17 eqid compC=compC
18 simpr1l CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwxBaseC
19 simpr1r CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwyBaseC
20 2 17 1 18 19 19 oppcco CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwIdCyxycompOyf=fyycompCxIdCy
21 simpl CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwCCat
22 simpr31 CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwfxHomOy
23 10 1 oppchom xHomOy=yHomCx
24 22 23 eleqtrdi CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwfyHomCx
25 2 10 11 21 19 17 18 24 catrid CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwfyycompCxIdCy=f
26 20 25 eqtrd CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwIdCyxycompOyf=f
27 simpr2l CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwzBaseC
28 2 17 1 19 19 27 oppcco CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwgyycompOzIdCy=IdCyzycompCyg
29 simpr32 CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwgyHomOz
30 10 1 oppchom yHomOz=zHomCy
31 29 30 eleqtrdi CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwgzHomCy
32 2 10 11 21 27 17 19 31 catlid CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwIdCyzycompCyg=g
33 28 32 eqtrd CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwgyycompOzIdCy=g
34 2 17 1 18 19 27 oppcco CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwgxycompOzf=fzycompCxg
35 2 10 17 21 27 19 18 31 24 catcocl CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwfzycompCxgzHomCx
36 34 35 eqeltrd CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwgxycompOzfzHomCx
37 10 1 oppchom xHomOz=zHomCx
38 36 37 eleqtrrdi CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwgxycompOzfxHomOz
39 simpr2r CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwwBaseC
40 simpr33 CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwhzHomOw
41 10 1 oppchom zHomOw=wHomCz
42 40 41 eleqtrdi CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwhwHomCz
43 2 10 17 21 39 27 19 42 31 18 24 catass CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwfzycompCxgwzcompCxh=fwycompCxgwzcompCyh
44 2 17 1 18 27 39 oppcco CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwhxzcompOwfzycompCxg=fzycompCxgwzcompCxh
45 2 17 1 18 19 39 oppcco CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwgwzcompCyhxycompOwf=fwycompCxgwzcompCyh
46 43 44 45 3eqtr4rd CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwgwzcompCyhxycompOwf=hxzcompOwfzycompCxg
47 2 17 1 19 27 39 oppcco CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwhyzcompOwg=gwzcompCyh
48 47 oveq1d CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwhyzcompOwgxycompOwf=gwzcompCyhxycompOwf
49 34 oveq2d CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwhxzcompOwgxycompOzf=hxzcompOwfzycompCxg
50 46 48 49 3eqtr4d CCatxBaseCyBaseCzBaseCwBaseCfxHomOygyHomOzhzHomOwhyzcompOwgxycompOwf=hxzcompOwgxycompOzf
51 4 5 6 8 9 16 26 33 38 50 iscatd2 CCatOCatIdO=yBaseCIdCy
52 2 11 cidfn CCatIdCFnBaseC
53 dffn5 IdCFnBaseCIdC=yBaseCIdCy
54 52 53 sylib CCatIdC=yBaseCIdCy
55 54 eqeq2d CCatIdO=IdCIdO=yBaseCIdCy
56 55 anbi2d CCatOCatIdO=IdCOCatIdO=yBaseCIdCy
57 51 56 mpbird CCatOCatIdO=IdC