Description: Lemma for oppccat . (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oppcbas.1 | |
|
Assertion | oppccatid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcbas.1 | |
|
2 | eqid | |
|
3 | 1 2 | oppcbas | |
4 | 3 | a1i | |
5 | eqidd | |
|
6 | eqidd | |
|
7 | 1 | fvexi | |
8 | 7 | a1i | |
9 | biid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | simpl | |
|
13 | simpr | |
|
14 | 2 10 11 12 13 | catidcl | |
15 | 10 1 | oppchom | |
16 | 14 15 | eleqtrrdi | |
17 | eqid | |
|
18 | simpr1l | |
|
19 | simpr1r | |
|
20 | 2 17 1 18 19 19 | oppcco | |
21 | simpl | |
|
22 | simpr31 | |
|
23 | 10 1 | oppchom | |
24 | 22 23 | eleqtrdi | |
25 | 2 10 11 21 19 17 18 24 | catrid | |
26 | 20 25 | eqtrd | |
27 | simpr2l | |
|
28 | 2 17 1 19 19 27 | oppcco | |
29 | simpr32 | |
|
30 | 10 1 | oppchom | |
31 | 29 30 | eleqtrdi | |
32 | 2 10 11 21 27 17 19 31 | catlid | |
33 | 28 32 | eqtrd | |
34 | 2 17 1 18 19 27 | oppcco | |
35 | 2 10 17 21 27 19 18 31 24 | catcocl | |
36 | 34 35 | eqeltrd | |
37 | 10 1 | oppchom | |
38 | 36 37 | eleqtrrdi | |
39 | simpr2r | |
|
40 | simpr33 | |
|
41 | 10 1 | oppchom | |
42 | 40 41 | eleqtrdi | |
43 | 2 10 17 21 39 27 19 42 31 18 24 | catass | |
44 | 2 17 1 18 27 39 | oppcco | |
45 | 2 17 1 18 19 39 | oppcco | |
46 | 43 44 45 | 3eqtr4rd | |
47 | 2 17 1 19 27 39 | oppcco | |
48 | 47 | oveq1d | |
49 | 34 | oveq2d | |
50 | 46 48 49 | 3eqtr4d | |
51 | 4 5 6 8 9 16 26 33 38 50 | iscatd2 | |
52 | 2 11 | cidfn | |
53 | dffn5 | |
|
54 | 52 53 | sylib | |
55 | 54 | eqeq2d | |
56 | 55 | anbi2d | |
57 | 51 56 | mpbird | |