Metamath Proof Explorer


Theorem opsqrlem1

Description: Lemma for opsqri . (Contributed by NM, 9-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypotheses opsqrlem1.1 THrmOp
opsqrlem1.2 normopT
opsqrlem1.3 0hopopT
opsqrlem1.4 R=1normopT·opT
opsqrlem1.5 T0hopuHrmOp0hopopuuu=R
Assertion opsqrlem1 T0hopvHrmOp0hopopvvv=T

Proof

Step Hyp Ref Expression
1 opsqrlem1.1 THrmOp
2 opsqrlem1.2 normopT
3 opsqrlem1.3 0hopopT
4 opsqrlem1.4 R=1normopT·opT
5 opsqrlem1.5 T0hopuHrmOp0hopopuuu=R
6 hmopf THrmOpT:
7 1 6 ax-mp T:
8 nmopge0 T:0normopT
9 7 8 ax-mp 0normopT
10 2 sqrtcli 0normopTnormopT
11 9 10 ax-mp normopT
12 hmopm normopTuHrmOpnormopT·opuHrmOp
13 11 12 mpan uHrmOpnormopT·opuHrmOp
14 13 ad2antlr T0hopuHrmOp0hopopuuu=RnormopT·opuHrmOp
15 2 sqrtge0i 0normopT0normopT
16 9 15 ax-mp 0normopT
17 leopmuli normopTuHrmOp0normopT0hopopu0hopopnormopT·opu
18 16 17 mpanr1 normopTuHrmOp0hopopu0hopopnormopT·opu
19 11 18 mpanl1 uHrmOp0hopopu0hopopnormopT·opu
20 19 ad2ant2lr T0hopuHrmOp0hopopuuu=R0hopopnormopT·opu
21 hmopf uHrmOpu:
22 11 recni normopT
23 homulcl normopTu:normopT·opu:
24 22 23 mpan u:normopT·opu:
25 homco1 normopTu:normopT·opu:normopT·opunormopT·opu=normopT·opunormopT·opu
26 22 25 mp3an1 u:normopT·opu:normopT·opunormopT·opu=normopT·opunormopT·opu
27 21 24 26 syl2anc2 uHrmOpnormopT·opunormopT·opu=normopT·opunormopT·opu
28 hmoplin uHrmOpuLinOp
29 homco2 normopTuLinOpu:unormopT·opu=normopT·opuu
30 22 29 mp3an1 uLinOpu:unormopT·opu=normopT·opuu
31 28 21 30 syl2anc uHrmOpunormopT·opu=normopT·opuu
32 31 oveq2d uHrmOpnormopT·opunormopT·opu=normopT·opnormopT·opuu
33 fco u:u:uu:
34 21 21 33 syl2anc uHrmOpuu:
35 homulass normopTnormopTuu:normopTnormopT·opuu=normopT·opnormopT·opuu
36 22 22 35 mp3an12 uu:normopTnormopT·opuu=normopT·opnormopT·opuu
37 34 36 syl uHrmOpnormopTnormopT·opuu=normopT·opnormopT·opuu
38 2 sqrtthi 0normopTnormopTnormopT=normopT
39 9 38 ax-mp normopTnormopT=normopT
40 39 oveq1i normopTnormopT·opuu=normopT·opuu
41 37 40 eqtr3di uHrmOpnormopT·opnormopT·opuu=normopT·opuu
42 27 32 41 3eqtrd uHrmOpnormopT·opunormopT·opu=normopT·opuu
43 42 ad2antlr T0hopuHrmOpuu=RnormopT·opunormopT·opu=normopT·opuu
44 id uu=Ruu=R
45 44 4 eqtrdi uu=Ruu=1normopT·opT
46 45 oveq2d uu=RnormopT·opuu=normopT·op1normopT·opT
47 hmoplin THrmOpTLinOp
48 1 47 ax-mp TLinOp
49 nmlnopne0 TLinOpnormopT0T0hop
50 48 49 ax-mp normopT0T0hop
51 2 recni normopT
52 51 recidzi normopT0normopT1normopT=1
53 50 52 sylbir T0hopnormopT1normopT=1
54 53 oveq1d T0hopnormopT1normopT·opT=1·opT
55 2 rerecclzi normopT01normopT
56 50 55 sylbir T0hop1normopT
57 56 recnd T0hop1normopT
58 homulass normopT1normopTT:normopT1normopT·opT=normopT·op1normopT·opT
59 51 7 58 mp3an13 1normopTnormopT1normopT·opT=normopT·op1normopT·opT
60 57 59 syl T0hopnormopT1normopT·opT=normopT·op1normopT·opT
61 homullid T:1·opT=T
62 7 61 mp1i T0hop1·opT=T
63 54 60 62 3eqtr3d T0hopnormopT·op1normopT·opT=T
64 46 63 sylan9eqr T0hopuu=RnormopT·opuu=T
65 64 adantlr T0hopuHrmOpuu=RnormopT·opuu=T
66 43 65 eqtrd T0hopuHrmOpuu=RnormopT·opunormopT·opu=T
67 66 adantrl T0hopuHrmOp0hopopuuu=RnormopT·opunormopT·opu=T
68 breq2 v=normopT·opu0hopopv0hopopnormopT·opu
69 coeq1 v=normopT·opuvv=normopT·opuv
70 coeq2 v=normopT·opunormopT·opuv=normopT·opunormopT·opu
71 69 70 eqtrd v=normopT·opuvv=normopT·opunormopT·opu
72 71 eqeq1d v=normopT·opuvv=TnormopT·opunormopT·opu=T
73 68 72 anbi12d v=normopT·opu0hopopvvv=T0hopopnormopT·opunormopT·opunormopT·opu=T
74 73 rspcev normopT·opuHrmOp0hopopnormopT·opunormopT·opunormopT·opu=TvHrmOp0hopopvvv=T
75 14 20 67 74 syl12anc T0hopuHrmOp0hopopuuu=RvHrmOp0hopopvvv=T
76 75 5 r19.29a T0hopvHrmOp0hopopvvv=T