Metamath Proof Explorer


Theorem pellfundex

Description: The fundamental solution as an infimum is itself a solution, showing that the solution set is discrete.

Since the fundamental solution is an infimum, there must be an element ge to Fund and lt 2*Fund. If this element is equal to the fundamental solution we're done, otherwise use the infimum again to find another element which must be ge Fund and lt the first element; their ratio is a group element in (1,2), contradicting pell14qrgapw . (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pellfundex DPellFundDPell1QRD

Proof

Step Hyp Ref Expression
1 2re 2
2 pellfundre DPellFundD
3 remulcl 2PellFundD2PellFundD
4 1 2 3 sylancr D2PellFundD
5 0red D0
6 1red D1
7 0lt1 0<1
8 7 a1i D0<1
9 pellfundgt1 D1<PellFundD
10 5 6 2 8 9 lttrd D0<PellFundD
11 2 10 elrpd DPellFundD+
12 2 11 ltaddrpd DPellFundD<PellFundD+PellFundD
13 2 recnd DPellFundD
14 13 2timesd D2PellFundD=PellFundD+PellFundD
15 12 14 breqtrrd DPellFundD<2PellFundD
16 pellfundglb D2PellFundDPellFundD<2PellFundDaPell1QRDPellFundDaa<2PellFundD
17 4 15 16 mpd3an23 DaPell1QRDPellFundDaa<2PellFundD
18 2 adantr DaPell1QRDPellFundD
19 pell1qrss14 DPell1QRDPell14QRD
20 19 sselda DaPell1QRDaPell14QRD
21 pell14qrre DaPell14QRDa
22 20 21 syldan DaPell1QRDa
23 18 22 leloed DaPell1QRDPellFundDaPellFundD<aPellFundD=a
24 simp-4l DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<aD
25 simp-4r DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<aaPell1QRD
26 simplr DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<abPell1QRD
27 simprr DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<ab<a
28 22 ad3antrrr DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<aa
29 4 ad4antr DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<a2PellFundD
30 19 ad4antr DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<aPell1QRDPell14QRD
31 30 26 sseldd DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<abPell14QRD
32 pell14qrre DbPell14QRDb
33 24 31 32 syl2anc DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<ab
34 remulcl 2b2b
35 1 33 34 sylancr DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<a2b
36 simprr DaPell1QRDPellFundD<aa<2PellFundDa<2PellFundD
37 36 ad2antrr DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<aa<2PellFundD
38 simprl DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<aPellFundDb
39 2 ad4antr DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<aPellFundD
40 1 a1i DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<a2
41 2pos 0<2
42 41 a1i DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<a0<2
43 lemul2 PellFundDb20<2PellFundDb2PellFundD2b
44 39 33 40 42 43 syl112anc DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<aPellFundDb2PellFundD2b
45 38 44 mpbid DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<a2PellFundD2b
46 28 29 35 37 45 ltletrd DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<aa<2b
47 simp1 DaPell1QRDbPell1QRDb<aa<2bD
48 19 3ad2ant1 DaPell1QRDbPell1QRDb<aa<2bPell1QRDPell14QRD
49 simp2l DaPell1QRDbPell1QRDb<aa<2baPell1QRD
50 48 49 sseldd DaPell1QRDbPell1QRDb<aa<2baPell14QRD
51 simp2r DaPell1QRDbPell1QRDb<aa<2bbPell1QRD
52 48 51 sseldd DaPell1QRDbPell1QRDb<aa<2bbPell14QRD
53 pell14qrdivcl DaPell14QRDbPell14QRDabPell14QRD
54 47 50 52 53 syl3anc DaPell1QRDbPell1QRDb<aa<2babPell14QRD
55 47 52 32 syl2anc DaPell1QRDbPell1QRDb<aa<2bb
56 55 recnd DaPell1QRDbPell1QRDb<aa<2bb
57 56 mullidd DaPell1QRDbPell1QRDb<aa<2b1b=b
58 simp3l DaPell1QRDbPell1QRDb<aa<2bb<a
59 57 58 eqbrtrd DaPell1QRDbPell1QRDb<aa<2b1b<a
60 1red DaPell1QRDbPell1QRDb<aa<2b1
61 47 50 21 syl2anc DaPell1QRDbPell1QRDb<aa<2ba
62 pell14qrgt0 DbPell14QRD0<b
63 47 52 62 syl2anc DaPell1QRDbPell1QRDb<aa<2b0<b
64 ltmuldiv 1ab0<b1b<a1<ab
65 60 61 55 63 64 syl112anc DaPell1QRDbPell1QRDb<aa<2b1b<a1<ab
66 59 65 mpbid DaPell1QRDbPell1QRDb<aa<2b1<ab
67 simp3r DaPell1QRDbPell1QRDb<aa<2ba<2b
68 1 a1i DaPell1QRDbPell1QRDb<aa<2b2
69 ltdivmul2 a2b0<bab<2a<2b
70 61 68 55 63 69 syl112anc DaPell1QRDbPell1QRDb<aa<2bab<2a<2b
71 67 70 mpbird DaPell1QRDbPell1QRDb<aa<2bab<2
72 simprr DabPell14QRD1<abab<2ab<2
73 simpll DabPell14QRD1<abab<2D
74 simplr DabPell14QRD1<abab<2abPell14QRD
75 simprl DabPell14QRD1<abab<21<ab
76 pell14qrgapw DabPell14QRD1<ab2<ab
77 73 74 75 76 syl3anc DabPell14QRD1<abab<22<ab
78 pell14qrre DabPell14QRDab
79 78 adantr DabPell14QRD1<abab<2ab
80 ltnsym 2ab2<ab¬ab<2
81 1 79 80 sylancr DabPell14QRD1<abab<22<ab¬ab<2
82 77 81 mpd DabPell14QRD1<abab<2¬ab<2
83 72 82 pm2.21dd DabPell14QRD1<abab<2PellFundDPell1QRD
84 47 54 66 71 83 syl22anc DaPell1QRDbPell1QRDb<aa<2bPellFundDPell1QRD
85 24 25 26 27 46 84 syl122anc DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<aPellFundDPell1QRD
86 simpll DaPell1QRDPellFundD<aa<2PellFundDD
87 22 adantr DaPell1QRDPellFundD<aa<2PellFundDa
88 simprl DaPell1QRDPellFundD<aa<2PellFundDPellFundD<a
89 pellfundglb DaPellFundD<abPell1QRDPellFundDbb<a
90 86 87 88 89 syl3anc DaPell1QRDPellFundD<aa<2PellFundDbPell1QRDPellFundDbb<a
91 85 90 r19.29a DaPell1QRDPellFundD<aa<2PellFundDPellFundDPell1QRD
92 91 exp32 DaPell1QRDPellFundD<aa<2PellFundDPellFundDPell1QRD
93 simp2 DaPell1QRDPellFundD=aa<2PellFundDPellFundD=a
94 simp1r DaPell1QRDPellFundD=aa<2PellFundDaPell1QRD
95 93 94 eqeltrd DaPell1QRDPellFundD=aa<2PellFundDPellFundDPell1QRD
96 95 3exp DaPell1QRDPellFundD=aa<2PellFundDPellFundDPell1QRD
97 92 96 jaod DaPell1QRDPellFundD<aPellFundD=aa<2PellFundDPellFundDPell1QRD
98 23 97 sylbid DaPell1QRDPellFundDaa<2PellFundDPellFundDPell1QRD
99 98 impd DaPell1QRDPellFundDaa<2PellFundDPellFundDPell1QRD
100 99 rexlimdva DaPell1QRDPellFundDaa<2PellFundDPellFundDPell1QRD
101 17 100 mpd DPellFundDPell1QRD