Metamath Proof Explorer


Theorem pf1mpf

Description: Convert a univariate polynomial function to multivariate. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pf1rcl.q Q=raneval1R
pf1f.b B=BaseR
mpfpf1.q E=ran1𝑜evalR
Assertion pf1mpf FQFxB1𝑜xE

Proof

Step Hyp Ref Expression
1 pf1rcl.q Q=raneval1R
2 pf1f.b B=BaseR
3 mpfpf1.q E=ran1𝑜evalR
4 1 pf1rcl FQRCRing
5 id FQFQ
6 5 1 eleqtrdi FQFraneval1R
7 eqid eval1R=eval1R
8 eqid Poly1R=Poly1R
9 eqid R𝑠B=R𝑠B
10 7 8 9 2 evl1rhm RCRingeval1RPoly1RRingHomR𝑠B
11 4 10 syl FQeval1RPoly1RRingHomR𝑠B
12 eqid BasePoly1R=BasePoly1R
13 eqid BaseR𝑠B=BaseR𝑠B
14 12 13 rhmf eval1RPoly1RRingHomR𝑠Beval1R:BasePoly1RBaseR𝑠B
15 ffn eval1R:BasePoly1RBaseR𝑠Beval1RFnBasePoly1R
16 fvelrnb eval1RFnBasePoly1RFraneval1RyBasePoly1Reval1Ry=F
17 11 14 15 16 4syl FQFraneval1RyBasePoly1Reval1Ry=F
18 6 17 mpbid FQyBasePoly1Reval1Ry=F
19 eqid 1𝑜evalR=1𝑜evalR
20 eqid 1𝑜mPolyR=1𝑜mPolyR
21 eqid PwSer1R=PwSer1R
22 8 21 12 ply1bas BasePoly1R=Base1𝑜mPolyR
23 7 19 2 20 22 evl1val RCRingyBasePoly1Reval1Ry=1𝑜evalRyzB1𝑜×z
24 23 coeq1d RCRingyBasePoly1Reval1RyxB1𝑜x=1𝑜evalRyzB1𝑜×zxB1𝑜x
25 coass 1𝑜evalRyzB1𝑜×zxB1𝑜x=1𝑜evalRyzB1𝑜×zxB1𝑜x
26 df1o2 1𝑜=
27 2 fvexi BV
28 0ex V
29 eqid xB1𝑜x=xB1𝑜x
30 26 27 28 29 mapsncnv xB1𝑜x-1=zB1𝑜×z
31 30 coeq1i xB1𝑜x-1xB1𝑜x=zB1𝑜×zxB1𝑜x
32 26 27 28 29 mapsnf1o2 xB1𝑜x:B1𝑜1-1 ontoB
33 f1ococnv1 xB1𝑜x:B1𝑜1-1 ontoBxB1𝑜x-1xB1𝑜x=IB1𝑜
34 32 33 mp1i RCRingyBasePoly1RxB1𝑜x-1xB1𝑜x=IB1𝑜
35 31 34 eqtr3id RCRingyBasePoly1RzB1𝑜×zxB1𝑜x=IB1𝑜
36 35 coeq2d RCRingyBasePoly1R1𝑜evalRyzB1𝑜×zxB1𝑜x=1𝑜evalRyIB1𝑜
37 25 36 eqtrid RCRingyBasePoly1R1𝑜evalRyzB1𝑜×zxB1𝑜x=1𝑜evalRyIB1𝑜
38 eqid R𝑠B1𝑜=R𝑠B1𝑜
39 eqid BaseR𝑠B1𝑜=BaseR𝑠B1𝑜
40 simpl RCRingyBasePoly1RRCRing
41 ovexd RCRingyBasePoly1RB1𝑜V
42 1on 1𝑜On
43 19 2 20 38 evlrhm 1𝑜OnRCRing1𝑜evalR1𝑜mPolyRRingHomR𝑠B1𝑜
44 42 43 mpan RCRing1𝑜evalR1𝑜mPolyRRingHomR𝑠B1𝑜
45 22 39 rhmf 1𝑜evalR1𝑜mPolyRRingHomR𝑠B1𝑜1𝑜evalR:BasePoly1RBaseR𝑠B1𝑜
46 44 45 syl RCRing1𝑜evalR:BasePoly1RBaseR𝑠B1𝑜
47 46 ffvelcdmda RCRingyBasePoly1R1𝑜evalRyBaseR𝑠B1𝑜
48 38 2 39 40 41 47 pwselbas RCRingyBasePoly1R1𝑜evalRy:B1𝑜B
49 fcoi1 1𝑜evalRy:B1𝑜B1𝑜evalRyIB1𝑜=1𝑜evalRy
50 48 49 syl RCRingyBasePoly1R1𝑜evalRyIB1𝑜=1𝑜evalRy
51 24 37 50 3eqtrd RCRingyBasePoly1Reval1RyxB1𝑜x=1𝑜evalRy
52 46 ffnd RCRing1𝑜evalRFnBasePoly1R
53 fnfvelrn 1𝑜evalRFnBasePoly1RyBasePoly1R1𝑜evalRyran1𝑜evalR
54 52 53 sylan RCRingyBasePoly1R1𝑜evalRyran1𝑜evalR
55 54 3 eleqtrrdi RCRingyBasePoly1R1𝑜evalRyE
56 51 55 eqeltrd RCRingyBasePoly1Reval1RyxB1𝑜xE
57 coeq1 eval1Ry=Feval1RyxB1𝑜x=FxB1𝑜x
58 57 eleq1d eval1Ry=Feval1RyxB1𝑜xEFxB1𝑜xE
59 56 58 syl5ibcom RCRingyBasePoly1Reval1Ry=FFxB1𝑜xE
60 59 rexlimdva RCRingyBasePoly1Reval1Ry=FFxB1𝑜xE
61 4 18 60 sylc FQFxB1𝑜xE