Metamath Proof Explorer


Theorem pgpfi1

Description: A finite group with order a power of a prime P is a P -group. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypothesis pgpfi1.1 X=BaseG
Assertion pgpfi1 GGrpPN0X=PNPpGrpG

Proof

Step Hyp Ref Expression
1 pgpfi1.1 X=BaseG
2 simpl2 GGrpPN0X=PNP
3 simpl1 GGrpPN0X=PNGGrp
4 simpll3 GGrpPN0X=PNxXN0
5 3 adantr GGrpPN0X=PNxXGGrp
6 simplr GGrpPN0X=PNxXX=PN
7 2 adantr GGrpPN0X=PNxXP
8 prmnn PP
9 7 8 syl GGrpPN0X=PNxXP
10 9 4 nnexpcld GGrpPN0X=PNxXPN
11 10 nnnn0d GGrpPN0X=PNxXPN0
12 6 11 eqeltrd GGrpPN0X=PNxXX0
13 1 fvexi XV
14 hashclb XVXFinX0
15 13 14 ax-mp XFinX0
16 12 15 sylibr GGrpPN0X=PNxXXFin
17 simpr GGrpPN0X=PNxXxX
18 eqid odG=odG
19 1 18 oddvds2 GGrpXFinxXodGxX
20 5 16 17 19 syl3anc GGrpPN0X=PNxXodGxX
21 20 6 breqtrd GGrpPN0X=PNxXodGxPN
22 oveq2 n=NPn=PN
23 22 breq2d n=NodGxPnodGxPN
24 23 rspcev N0odGxPNn0odGxPn
25 4 21 24 syl2anc GGrpPN0X=PNxXn0odGxPn
26 1 18 odcl2 GGrpXFinxXodGx
27 5 16 17 26 syl3anc GGrpPN0X=PNxXodGx
28 pcprmpw2 PodGxn0odGxPnodGx=PPpCntodGx
29 pcprmpw PodGxn0odGx=PnodGx=PPpCntodGx
30 28 29 bitr4d PodGxn0odGxPnn0odGx=Pn
31 7 27 30 syl2anc GGrpPN0X=PNxXn0odGxPnn0odGx=Pn
32 25 31 mpbid GGrpPN0X=PNxXn0odGx=Pn
33 32 ralrimiva GGrpPN0X=PNxXn0odGx=Pn
34 1 18 ispgp PpGrpGPGGrpxXn0odGx=Pn
35 2 3 33 34 syl3anbrc GGrpPN0X=PNPpGrpG
36 35 ex GGrpPN0X=PNPpGrpG