Description: A finite group with order a power of a prime P is a P -group. (Contributed by Mario Carneiro, 16-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pgpfi1.1 | |
|
Assertion | pgpfi1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pgpfi1.1 | |
|
2 | simpl2 | |
|
3 | simpl1 | |
|
4 | simpll3 | |
|
5 | 3 | adantr | |
6 | simplr | |
|
7 | 2 | adantr | |
8 | prmnn | |
|
9 | 7 8 | syl | |
10 | 9 4 | nnexpcld | |
11 | 10 | nnnn0d | |
12 | 6 11 | eqeltrd | |
13 | 1 | fvexi | |
14 | hashclb | |
|
15 | 13 14 | ax-mp | |
16 | 12 15 | sylibr | |
17 | simpr | |
|
18 | eqid | |
|
19 | 1 18 | oddvds2 | |
20 | 5 16 17 19 | syl3anc | |
21 | 20 6 | breqtrd | |
22 | oveq2 | |
|
23 | 22 | breq2d | |
24 | 23 | rspcev | |
25 | 4 21 24 | syl2anc | |
26 | 1 18 | odcl2 | |
27 | 5 16 17 26 | syl3anc | |
28 | pcprmpw2 | |
|
29 | pcprmpw | |
|
30 | 28 29 | bitr4d | |
31 | 7 27 30 | syl2anc | |
32 | 25 31 | mpbid | |
33 | 32 | ralrimiva | |
34 | 1 18 | ispgp | |
35 | 2 3 33 34 | syl3anbrc | |
36 | 35 | ex | |