| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1annidl.o |  | 
						
							| 2 |  | ply1annidl.p |  | 
						
							| 3 |  | ply1annidl.b |  | 
						
							| 4 |  | ply1annidl.r |  | 
						
							| 5 |  | ply1annidl.s |  | 
						
							| 6 |  | ply1annidl.a |  | 
						
							| 7 |  | ply1annidl.0 |  | 
						
							| 8 |  | ply1annidl.q |  | 
						
							| 9 |  | ply1annnr.u |  | 
						
							| 10 |  | ply1annnr.1 |  | 
						
							| 11 | 8 | a1i |  | 
						
							| 12 | 4 | crngringd |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 13 | subrg1cl |  | 
						
							| 15 | 5 14 | syl |  | 
						
							| 16 | 3 | subrgss |  | 
						
							| 17 | 5 16 | syl |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 18 3 13 | ress1r |  | 
						
							| 20 | 12 15 17 19 | syl3anc |  | 
						
							| 21 | 20 | fveq2d |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 18 | subrgring |  | 
						
							| 26 | 5 25 | syl |  | 
						
							| 27 | 2 22 23 24 26 | ply1ascl1 |  | 
						
							| 28 | 21 27 | eqtrd |  | 
						
							| 29 | 2 | ply1ring |  | 
						
							| 30 | 9 24 | ringidcl |  | 
						
							| 31 | 26 29 30 | 3syl |  | 
						
							| 32 | 28 31 | eqeltrd |  | 
						
							| 33 | 1 2 18 3 22 4 5 15 6 | evls1scafv |  | 
						
							| 34 | 13 7 | nzrnz |  | 
						
							| 35 | 10 34 | syl |  | 
						
							| 36 | 33 35 | eqnetrd |  | 
						
							| 37 | 36 | neneqd |  | 
						
							| 38 |  | fveq2 |  | 
						
							| 39 | 38 | fveq1d |  | 
						
							| 40 | 39 | eqeq1d |  | 
						
							| 41 | 40 | elrab |  | 
						
							| 42 | 41 | simprbi |  | 
						
							| 43 | 37 42 | nsyl |  | 
						
							| 44 |  | nelne1 |  | 
						
							| 45 | 32 43 44 | syl2anc |  | 
						
							| 46 | 45 | necomd |  | 
						
							| 47 | 11 46 | eqnetrd |  |