Metamath Proof Explorer


Theorem ply1termlem

Description: Lemma for ply1term . (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypothesis ply1term.1 F=zAzN
Assertion ply1termlem AN0F=zk=0Nifk=NA0zk

Proof

Step Hyp Ref Expression
1 ply1term.1 F=zAzN
2 simplr AN0zN0
3 nn0uz 0=0
4 2 3 eleqtrdi AN0zN0
5 fzss1 N0NN0N
6 4 5 syl AN0zNN0N
7 elfz1eq kNNk=N
8 7 adantl AN0zkNNk=N
9 iftrue k=Nifk=NA0=A
10 8 9 syl AN0zkNNifk=NA0=A
11 simpll AN0zA
12 11 adantr AN0zkNNA
13 10 12 eqeltrd AN0zkNNifk=NA0
14 simplr AN0zkNNz
15 2 adantr AN0zkNNN0
16 8 15 eqeltrd AN0zkNNk0
17 14 16 expcld AN0zkNNzk
18 13 17 mulcld AN0zkNNifk=NA0zk
19 eldifn k0NNN¬kNN
20 19 adantl AN0zk0NNN¬kNN
21 2 adantr AN0zk0NNNN0
22 21 nn0zd AN0zk0NNNN
23 fzsn NNN=N
24 23 eleq2d NkNNkN
25 elsn2g NkNk=N
26 24 25 bitrd NkNNk=N
27 22 26 syl AN0zk0NNNkNNk=N
28 20 27 mtbid AN0zk0NNN¬k=N
29 28 iffalsed AN0zk0NNNifk=NA0=0
30 29 oveq1d AN0zk0NNNifk=NA0zk=0zk
31 simpr AN0zz
32 eldifi k0NNNk0N
33 elfznn0 k0Nk0
34 32 33 syl k0NNNk0
35 expcl zk0zk
36 31 34 35 syl2an AN0zk0NNNzk
37 36 mul02d AN0zk0NNN0zk=0
38 30 37 eqtrd AN0zk0NNNifk=NA0zk=0
39 fzfid AN0z0NFin
40 6 18 38 39 fsumss AN0zk=NNifk=NA0zk=k=0Nifk=NA0zk
41 2 nn0zd AN0zN
42 31 2 expcld AN0zzN
43 11 42 mulcld AN0zAzN
44 oveq2 k=Nzk=zN
45 9 44 oveq12d k=Nifk=NA0zk=AzN
46 45 fsum1 NAzNk=NNifk=NA0zk=AzN
47 41 43 46 syl2anc AN0zk=NNifk=NA0zk=AzN
48 40 47 eqtr3d AN0zk=0Nifk=NA0zk=AzN
49 48 mpteq2dva AN0zk=0Nifk=NA0zk=zAzN
50 1 49 eqtr4id AN0F=zk=0Nifk=NA0zk