| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1term.1 |  | 
						
							| 2 |  | simplr |  | 
						
							| 3 |  | nn0uz |  | 
						
							| 4 | 2 3 | eleqtrdi |  | 
						
							| 5 |  | fzss1 |  | 
						
							| 6 | 4 5 | syl |  | 
						
							| 7 |  | elfz1eq |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 |  | iftrue |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 |  | simpll |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 | 10 12 | eqeltrd |  | 
						
							| 14 |  | simplr |  | 
						
							| 15 | 2 | adantr |  | 
						
							| 16 | 8 15 | eqeltrd |  | 
						
							| 17 | 14 16 | expcld |  | 
						
							| 18 | 13 17 | mulcld |  | 
						
							| 19 |  | eldifn |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 | 2 | adantr |  | 
						
							| 22 | 21 | nn0zd |  | 
						
							| 23 |  | fzsn |  | 
						
							| 24 | 23 | eleq2d |  | 
						
							| 25 |  | elsn2g |  | 
						
							| 26 | 24 25 | bitrd |  | 
						
							| 27 | 22 26 | syl |  | 
						
							| 28 | 20 27 | mtbid |  | 
						
							| 29 | 28 | iffalsed |  | 
						
							| 30 | 29 | oveq1d |  | 
						
							| 31 |  | simpr |  | 
						
							| 32 |  | eldifi |  | 
						
							| 33 |  | elfznn0 |  | 
						
							| 34 | 32 33 | syl |  | 
						
							| 35 |  | expcl |  | 
						
							| 36 | 31 34 35 | syl2an |  | 
						
							| 37 | 36 | mul02d |  | 
						
							| 38 | 30 37 | eqtrd |  | 
						
							| 39 |  | fzfid |  | 
						
							| 40 | 6 18 38 39 | fsumss |  | 
						
							| 41 | 2 | nn0zd |  | 
						
							| 42 | 31 2 | expcld |  | 
						
							| 43 | 11 42 | mulcld |  | 
						
							| 44 |  | oveq2 |  | 
						
							| 45 | 9 44 | oveq12d |  | 
						
							| 46 | 45 | fsum1 |  | 
						
							| 47 | 41 43 46 | syl2anc |  | 
						
							| 48 | 40 47 | eqtr3d |  | 
						
							| 49 | 48 | mpteq2dva |  | 
						
							| 50 | 1 49 | eqtr4id |  |