Description: Lemma for ply1term . (Contributed by Mario Carneiro, 26-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ply1term.1 | |
|
Assertion | ply1termlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1term.1 | |
|
2 | simplr | |
|
3 | nn0uz | |
|
4 | 2 3 | eleqtrdi | |
5 | fzss1 | |
|
6 | 4 5 | syl | |
7 | elfz1eq | |
|
8 | 7 | adantl | |
9 | iftrue | |
|
10 | 8 9 | syl | |
11 | simpll | |
|
12 | 11 | adantr | |
13 | 10 12 | eqeltrd | |
14 | simplr | |
|
15 | 2 | adantr | |
16 | 8 15 | eqeltrd | |
17 | 14 16 | expcld | |
18 | 13 17 | mulcld | |
19 | eldifn | |
|
20 | 19 | adantl | |
21 | 2 | adantr | |
22 | 21 | nn0zd | |
23 | fzsn | |
|
24 | 23 | eleq2d | |
25 | elsn2g | |
|
26 | 24 25 | bitrd | |
27 | 22 26 | syl | |
28 | 20 27 | mtbid | |
29 | 28 | iffalsed | |
30 | 29 | oveq1d | |
31 | simpr | |
|
32 | eldifi | |
|
33 | elfznn0 | |
|
34 | 32 33 | syl | |
35 | expcl | |
|
36 | 31 34 35 | syl2an | |
37 | 36 | mul02d | |
38 | 30 37 | eqtrd | |
39 | fzfid | |
|
40 | 6 18 38 39 | fsumss | |
41 | 2 | nn0zd | |
42 | 31 2 | expcld | |
43 | 11 42 | mulcld | |
44 | oveq2 | |
|
45 | 9 44 | oveq12d | |
46 | 45 | fsum1 | |
47 | 41 43 46 | syl2anc | |
48 | 40 47 | eqtr3d | |
49 | 48 | mpteq2dva | |
50 | 1 49 | eqtr4id | |