Metamath Proof Explorer


Theorem plyco0

Description: Two ways to say that a function on the nonnegative integers has finite support. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion plyco0 N0A:0AN+1=0k0Ak0kN

Proof

Step Hyp Ref Expression
1 simprr N0A:0AN+1=0k0Ak0Ak0
2 ffun A:0FunA
3 2 adantl N0A:0FunA
4 peano2nn0 N0N+10
5 4 adantr N0A:0N+10
6 eluznn0 N+10kN+1k0
7 6 ex N+10kN+1k0
8 5 7 syl N0A:0kN+1k0
9 8 ssrdv N0A:0N+10
10 fdm A:0domA=0
11 10 adantl N0A:0domA=0
12 9 11 sseqtrrd N0A:0N+1domA
13 funfvima2 FunAN+1domAkN+1AkAN+1
14 3 12 13 syl2anc N0A:0kN+1AkAN+1
15 14 ad2antrr N0A:0AN+1=0k0Ak0kN+1AkAN+1
16 nn0z N0N
17 16 adantr N0A:0N
18 17 peano2zd N0A:0N+1
19 18 ad2antrr N0A:0AN+1=0k0Ak0N+1
20 nn0z k0k
21 20 ad2antrl N0A:0AN+1=0k0Ak0k
22 eluz N+1kkN+1N+1k
23 19 21 22 syl2anc N0A:0AN+1=0k0Ak0kN+1N+1k
24 simplr N0A:0AN+1=0k0Ak0AN+1=0
25 24 eleq2d N0A:0AN+1=0k0Ak0AkAN+1Ak0
26 fvex AkV
27 26 elsn Ak0Ak=0
28 25 27 bitrdi N0A:0AN+1=0k0Ak0AkAN+1Ak=0
29 15 23 28 3imtr3d N0A:0AN+1=0k0Ak0N+1kAk=0
30 29 necon3ad N0A:0AN+1=0k0Ak0Ak0¬N+1k
31 1 30 mpd N0A:0AN+1=0k0Ak0¬N+1k
32 nn0re k0k
33 32 ad2antrl N0A:0AN+1=0k0Ak0k
34 18 zred N0A:0N+1
35 34 ad2antrr N0A:0AN+1=0k0Ak0N+1
36 33 35 ltnled N0A:0AN+1=0k0Ak0k<N+1¬N+1k
37 31 36 mpbird N0A:0AN+1=0k0Ak0k<N+1
38 17 ad2antrr N0A:0AN+1=0k0Ak0N
39 zleltp1 kNkNk<N+1
40 21 38 39 syl2anc N0A:0AN+1=0k0Ak0kNk<N+1
41 37 40 mpbird N0A:0AN+1=0k0Ak0kN
42 41 expr N0A:0AN+1=0k0Ak0kN
43 42 ralrimiva N0A:0AN+1=0k0Ak0kN
44 simpr k0Ak0kNnN+1nN+1
45 eluznn0 N+10nN+1n0
46 5 44 45 syl2an N0A:0k0Ak0kNnN+1n0
47 nn0re N0N
48 47 adantr N0A:0N
49 48 adantr N0A:0k0Ak0kNnN+1N
50 34 adantr N0A:0k0Ak0kNnN+1N+1
51 46 nn0red N0A:0k0Ak0kNnN+1n
52 49 ltp1d N0A:0k0Ak0kNnN+1N<N+1
53 eluzle nN+1N+1n
54 53 ad2antll N0A:0k0Ak0kNnN+1N+1n
55 49 50 51 52 54 ltletrd N0A:0k0Ak0kNnN+1N<n
56 49 51 ltnled N0A:0k0Ak0kNnN+1N<n¬nN
57 55 56 mpbid N0A:0k0Ak0kNnN+1¬nN
58 fveq2 k=nAk=An
59 58 neeq1d k=nAk0An0
60 breq1 k=nkNnN
61 59 60 imbi12d k=nAk0kNAn0nN
62 simprl N0A:0k0Ak0kNnN+1k0Ak0kN
63 61 62 46 rspcdva N0A:0k0Ak0kNnN+1An0nN
64 63 necon1bd N0A:0k0Ak0kNnN+1¬nNAn=0
65 57 64 mpd N0A:0k0Ak0kNnN+1An=0
66 ffn A:0AFn0
67 66 ad2antlr N0A:0k0Ak0kNnN+1AFn0
68 fniniseg AFn0nA-10n0An=0
69 67 68 syl N0A:0k0Ak0kNnN+1nA-10n0An=0
70 46 65 69 mpbir2and N0A:0k0Ak0kNnN+1nA-10
71 70 expr N0A:0k0Ak0kNnN+1nA-10
72 71 ssrdv N0A:0k0Ak0kNN+1A-10
73 funimass3 FunAN+1domAAN+10N+1A-10
74 3 12 73 syl2anc N0A:0AN+10N+1A-10
75 74 adantr N0A:0k0Ak0kNAN+10N+1A-10
76 72 75 mpbird N0A:0k0Ak0kNAN+10
77 48 ltp1d N0A:0N<N+1
78 48 34 ltnled N0A:0N<N+1¬N+1N
79 77 78 mpbid N0A:0¬N+1N
80 79 adantr N0A:0k0Ak0kN¬N+1N
81 fveq2 k=N+1Ak=AN+1
82 81 neeq1d k=N+1Ak0AN+10
83 breq1 k=N+1kNN+1N
84 82 83 imbi12d k=N+1Ak0kNAN+10N+1N
85 84 rspcva N+10k0Ak0kNAN+10N+1N
86 5 85 sylan N0A:0k0Ak0kNAN+10N+1N
87 86 necon1bd N0A:0k0Ak0kN¬N+1NAN+1=0
88 80 87 mpd N0A:0k0Ak0kNAN+1=0
89 uzid N+1N+1N+1
90 18 89 syl N0A:0N+1N+1
91 funfvima2 FunAN+1domAN+1N+1AN+1AN+1
92 3 12 91 syl2anc N0A:0N+1N+1AN+1AN+1
93 90 92 mpd N0A:0AN+1AN+1
94 93 adantr N0A:0k0Ak0kNAN+1AN+1
95 88 94 eqeltrrd N0A:0k0Ak0kN0AN+1
96 95 snssd N0A:0k0Ak0kN0AN+1
97 76 96 eqssd N0A:0k0Ak0kNAN+1=0
98 43 97 impbida N0A:0AN+1=0k0Ak0kN