Metamath Proof Explorer


Theorem plydivlem3

Description: Lemma for plydivex . Base case of induction. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses plydiv.pl φxSySx+yS
plydiv.tm φxSySxyS
plydiv.rc φxSx01xS
plydiv.m1 φ1S
plydiv.f φFPolyS
plydiv.g φGPolyS
plydiv.z φG0𝑝
plydiv.r R=FfG×fq
plydiv.0 φF=0𝑝degFdegG<0
Assertion plydivlem3 φqPolySR=0𝑝degR<degG

Proof

Step Hyp Ref Expression
1 plydiv.pl φxSySx+yS
2 plydiv.tm φxSySxyS
3 plydiv.rc φxSx01xS
4 plydiv.m1 φ1S
5 plydiv.f φFPolyS
6 plydiv.g φGPolyS
7 plydiv.z φG0𝑝
8 plydiv.r R=FfG×fq
9 plydiv.0 φF=0𝑝degFdegG<0
10 plybss FPolySS
11 ply0 S0𝑝PolyS
12 5 10 11 3syl φ0𝑝PolyS
13 cnex V
14 13 a1i φV
15 plyf FPolySF:
16 ffn F:FFn
17 5 15 16 3syl φFFn
18 plyf GPolySG:
19 ffn G:GFn
20 6 18 19 3syl φGFn
21 plyf 0𝑝PolyS0𝑝:
22 ffn 0𝑝:0𝑝Fn
23 12 21 22 3syl φ0𝑝Fn
24 inidm =
25 20 23 14 14 24 offn φG×f0𝑝Fn
26 eqidd φzFz=Fz
27 eqidd φzGz=Gz
28 0pval z0𝑝z=0
29 28 adantl φz0𝑝z=0
30 20 23 14 14 24 27 29 ofval φzG×f0𝑝z=Gz0
31 6 18 syl φG:
32 31 ffvelcdmda φzGz
33 32 mul01d φzGz0=0
34 30 33 eqtrd φzG×f0𝑝z=0
35 5 15 syl φF:
36 35 ffvelcdmda φzFz
37 36 subid1d φzFz0=Fz
38 14 17 25 17 26 34 37 offveq φFfG×f0𝑝=F
39 38 eqeq1d φFfG×f0𝑝=0𝑝F=0𝑝
40 38 fveq2d φdegFfG×f0𝑝=degF
41 dgrcl GPolySdegG0
42 6 41 syl φdegG0
43 42 nn0red φdegG
44 43 recnd φdegG
45 44 addlidd φ0+degG=degG
46 45 eqcomd φdegG=0+degG
47 40 46 breq12d φdegFfG×f0𝑝<degGdegF<0+degG
48 dgrcl FPolySdegF0
49 5 48 syl φdegF0
50 49 nn0red φdegF
51 0red φ0
52 50 43 51 ltsubaddd φdegFdegG<0degF<0+degG
53 47 52 bitr4d φdegFfG×f0𝑝<degGdegFdegG<0
54 39 53 orbi12d φFfG×f0𝑝=0𝑝degFfG×f0𝑝<degGF=0𝑝degFdegG<0
55 9 54 mpbird φFfG×f0𝑝=0𝑝degFfG×f0𝑝<degG
56 oveq2 q=0𝑝G×fq=G×f0𝑝
57 56 oveq2d q=0𝑝FfG×fq=FfG×f0𝑝
58 8 57 eqtrid q=0𝑝R=FfG×f0𝑝
59 58 eqeq1d q=0𝑝R=0𝑝FfG×f0𝑝=0𝑝
60 58 fveq2d q=0𝑝degR=degFfG×f0𝑝
61 60 breq1d q=0𝑝degR<degGdegFfG×f0𝑝<degG
62 59 61 orbi12d q=0𝑝R=0𝑝degR<degGFfG×f0𝑝=0𝑝degFfG×f0𝑝<degG
63 62 rspcev 0𝑝PolySFfG×f0𝑝=0𝑝degFfG×f0𝑝<degGqPolySR=0𝑝degR<degG
64 12 55 63 syl2anc φqPolySR=0𝑝degR<degG