Description: Lemma for plydivex . Base case of induction. (Contributed by Mario Carneiro, 24-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | plydiv.pl | |
|
plydiv.tm | |
||
plydiv.rc | |
||
plydiv.m1 | |
||
plydiv.f | |
||
plydiv.g | |
||
plydiv.z | |
||
plydiv.r | |
||
plydiv.0 | |
||
Assertion | plydivlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plydiv.pl | |
|
2 | plydiv.tm | |
|
3 | plydiv.rc | |
|
4 | plydiv.m1 | |
|
5 | plydiv.f | |
|
6 | plydiv.g | |
|
7 | plydiv.z | |
|
8 | plydiv.r | |
|
9 | plydiv.0 | |
|
10 | plybss | |
|
11 | ply0 | |
|
12 | 5 10 11 | 3syl | |
13 | cnex | |
|
14 | 13 | a1i | |
15 | plyf | |
|
16 | ffn | |
|
17 | 5 15 16 | 3syl | |
18 | plyf | |
|
19 | ffn | |
|
20 | 6 18 19 | 3syl | |
21 | plyf | |
|
22 | ffn | |
|
23 | 12 21 22 | 3syl | |
24 | inidm | |
|
25 | 20 23 14 14 24 | offn | |
26 | eqidd | |
|
27 | eqidd | |
|
28 | 0pval | |
|
29 | 28 | adantl | |
30 | 20 23 14 14 24 27 29 | ofval | |
31 | 6 18 | syl | |
32 | 31 | ffvelcdmda | |
33 | 32 | mul01d | |
34 | 30 33 | eqtrd | |
35 | 5 15 | syl | |
36 | 35 | ffvelcdmda | |
37 | 36 | subid1d | |
38 | 14 17 25 17 26 34 37 | offveq | |
39 | 38 | eqeq1d | |
40 | 38 | fveq2d | |
41 | dgrcl | |
|
42 | 6 41 | syl | |
43 | 42 | nn0red | |
44 | 43 | recnd | |
45 | 44 | addlidd | |
46 | 45 | eqcomd | |
47 | 40 46 | breq12d | |
48 | dgrcl | |
|
49 | 5 48 | syl | |
50 | 49 | nn0red | |
51 | 0red | |
|
52 | 50 43 51 | ltsubaddd | |
53 | 47 52 | bitr4d | |
54 | 39 53 | orbi12d | |
55 | 9 54 | mpbird | |
56 | oveq2 | |
|
57 | 56 | oveq2d | |
58 | 8 57 | eqtrid | |
59 | 58 | eqeq1d | |
60 | 58 | fveq2d | |
61 | 60 | breq1d | |
62 | 59 61 | orbi12d | |
63 | 62 | rspcev | |
64 | 12 55 63 | syl2anc | |