Step |
Hyp |
Ref |
Expression |
1 |
|
ax-resscn |
|
2 |
|
1re |
|
3 |
|
plyid |
|
4 |
1 2 3
|
mp2an |
|
5 |
|
plymul02 |
|
6 |
5
|
fveq2d |
|
7 |
4 6
|
ax-mp |
|
8 |
|
fconstmpt |
|
9 |
|
coe0 |
|
10 |
|
eqidd |
|
11 |
|
elnnne0 |
|
12 |
|
df-ne |
|
13 |
12
|
anbi2i |
|
14 |
11 13
|
bitr2i |
|
15 |
|
nnm1nn0 |
|
16 |
14 15
|
sylbi |
|
17 |
|
eqidd |
|
18 |
|
fconstmpt |
|
19 |
9 18
|
eqtri |
|
20 |
|
c0ex |
|
21 |
17 19 20
|
fvmpt |
|
22 |
16 21
|
syl |
|
23 |
10 22
|
ifeqda |
|
24 |
23
|
mpteq2ia |
|
25 |
8 9 24
|
3eqtr4ri |
|
26 |
7 25
|
eqtr4i |
|
27 |
|
fvoveq1 |
|
28 |
|
simpl |
|
29 |
28
|
fveq2d |
|
30 |
29
|
fveq1d |
|
31 |
30
|
ifeq2d |
|
32 |
31
|
mpteq2dva |
|
33 |
26 27 32
|
3eqtr4a |
|
34 |
33
|
adantl |
|
35 |
|
simpl |
|
36 |
|
elsng |
|
37 |
36
|
notbid |
|
38 |
37
|
biimpar |
|
39 |
35 38
|
eldifd |
|
40 |
|
plymulx0 |
|
41 |
39 40
|
syl |
|
42 |
34 41
|
pm2.61dan |
|