Metamath Proof Explorer


Theorem plymulx

Description: Coefficients of a polynomial multiplied by Xp . (Contributed by Thierry Arnoux, 25-Sep-2018)

Ref Expression
Assertion plymulx FPolycoeffF×fXp=n0ifn=00coeffFn1

Proof

Step Hyp Ref Expression
1 ax-resscn
2 1re 1
3 plyid 1XpPoly
4 1 2 3 mp2an XpPoly
5 plymul02 XpPoly0𝑝×fXp=0𝑝
6 5 fveq2d XpPolycoeff0𝑝×fXp=coeff0𝑝
7 4 6 ax-mp coeff0𝑝×fXp=coeff0𝑝
8 fconstmpt 0×0=n00
9 coe0 coeff0𝑝=0×0
10 eqidd n0n=00=0
11 elnnne0 nn0n0
12 df-ne n0¬n=0
13 12 anbi2i n0n0n0¬n=0
14 11 13 bitr2i n0¬n=0n
15 nnm1nn0 nn10
16 14 15 sylbi n0¬n=0n10
17 eqidd m=n10=0
18 fconstmpt 0×0=m00
19 9 18 eqtri coeff0𝑝=m00
20 c0ex 0V
21 17 19 20 fvmpt n10coeff0𝑝n1=0
22 16 21 syl n0¬n=0coeff0𝑝n1=0
23 10 22 ifeqda n0ifn=00coeff0𝑝n1=0
24 23 mpteq2ia n0ifn=00coeff0𝑝n1=n00
25 8 9 24 3eqtr4ri n0ifn=00coeff0𝑝n1=coeff0𝑝
26 7 25 eqtr4i coeff0𝑝×fXp=n0ifn=00coeff0𝑝n1
27 fvoveq1 F=0𝑝coeffF×fXp=coeff0𝑝×fXp
28 simpl F=0𝑝n0F=0𝑝
29 28 fveq2d F=0𝑝n0coeffF=coeff0𝑝
30 29 fveq1d F=0𝑝n0coeffFn1=coeff0𝑝n1
31 30 ifeq2d F=0𝑝n0ifn=00coeffFn1=ifn=00coeff0𝑝n1
32 31 mpteq2dva F=0𝑝n0ifn=00coeffFn1=n0ifn=00coeff0𝑝n1
33 26 27 32 3eqtr4a F=0𝑝coeffF×fXp=n0ifn=00coeffFn1
34 33 adantl FPolyF=0𝑝coeffF×fXp=n0ifn=00coeffFn1
35 simpl FPoly¬F=0𝑝FPoly
36 elsng FPolyF0𝑝F=0𝑝
37 36 notbid FPoly¬F0𝑝¬F=0𝑝
38 37 biimpar FPoly¬F=0𝑝¬F0𝑝
39 35 38 eldifd FPoly¬F=0𝑝FPoly0𝑝
40 plymulx0 FPoly0𝑝coeffF×fXp=n0ifn=00coeffFn1
41 39 40 syl FPoly¬F=0𝑝coeffF×fXp=n0ifn=00coeffFn1
42 34 41 pm2.61dan FPolycoeffF×fXp=n0ifn=00coeffFn1