| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-resscn |  | 
						
							| 2 |  | 1re |  | 
						
							| 3 |  | plyid |  | 
						
							| 4 | 1 2 3 | mp2an |  | 
						
							| 5 |  | plymul02 |  | 
						
							| 6 | 5 | fveq2d |  | 
						
							| 7 | 4 6 | ax-mp |  | 
						
							| 8 |  | fconstmpt |  | 
						
							| 9 |  | coe0 |  | 
						
							| 10 |  | eqidd |  | 
						
							| 11 |  | elnnne0 |  | 
						
							| 12 |  | df-ne |  | 
						
							| 13 | 12 | anbi2i |  | 
						
							| 14 | 11 13 | bitr2i |  | 
						
							| 15 |  | nnm1nn0 |  | 
						
							| 16 | 14 15 | sylbi |  | 
						
							| 17 |  | eqidd |  | 
						
							| 18 |  | fconstmpt |  | 
						
							| 19 | 9 18 | eqtri |  | 
						
							| 20 |  | c0ex |  | 
						
							| 21 | 17 19 20 | fvmpt |  | 
						
							| 22 | 16 21 | syl |  | 
						
							| 23 | 10 22 | ifeqda |  | 
						
							| 24 | 23 | mpteq2ia |  | 
						
							| 25 | 8 9 24 | 3eqtr4ri |  | 
						
							| 26 | 7 25 | eqtr4i |  | 
						
							| 27 |  | fvoveq1 |  | 
						
							| 28 |  | simpl |  | 
						
							| 29 | 28 | fveq2d |  | 
						
							| 30 | 29 | fveq1d |  | 
						
							| 31 | 30 | ifeq2d |  | 
						
							| 32 | 31 | mpteq2dva |  | 
						
							| 33 | 26 27 32 | 3eqtr4a |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 |  | simpl |  | 
						
							| 36 |  | elsng |  | 
						
							| 37 | 36 | notbid |  | 
						
							| 38 | 37 | biimpar |  | 
						
							| 39 | 35 38 | eldifd |  | 
						
							| 40 |  | plymulx0 |  | 
						
							| 41 | 39 40 | syl |  | 
						
							| 42 | 34 41 | pm2.61dan |  |