Metamath Proof Explorer


Theorem pntrsumbnd

Description: A bound on a sum over R . Equation 10.1.16 of Shapiro, p. 403. (Contributed by Mario Carneiro, 25-May-2016)

Ref Expression
Hypothesis pntrval.r R=a+ψaa
Assertion pntrsumbnd c+mn=1mRnnn+1c

Proof

Step Hyp Ref Expression
1 pntrval.r R=a+ψaa
2 ssidd
3 1red 1
4 fzfid m1mFin
5 elfznn n1mn
6 5 adantl mn1mn
7 nnrp nn+
8 1 pntrf R:+
9 8 ffvelcdmi n+Rn
10 7 9 syl nRn
11 peano2nn nn+1
12 nnmulcl nn+1nn+1
13 11 12 mpdan nnn+1
14 10 13 nndivred nRnnn+1
15 14 recnd nRnnn+1
16 6 15 syl mn1mRnnn+1
17 4 16 fsumcl mn=1mRnnn+1
18 1 pntrsumo1 mn=1mRnnn+1𝑂1
19 18 a1i mn=1mRnnn+1𝑂1
20 fzfid x1x1xFin
21 elfznn n1xn
22 21 adantl x1xn1xn
23 22 15 syl x1xn1xRnnn+1
24 23 abscld x1xn1xRnnn+1
25 20 24 fsumrecl x1xn=1xRnnn+1
26 17 adantr mx1xm<xn=1mRnnn+1
27 26 abscld mx1xm<xn=1mRnnn+1
28 fzfid mx1xm<x1mFin
29 16 adantlr mx1xm<xn1mRnnn+1
30 29 abscld mx1xm<xn1mRnnn+1
31 28 30 fsumrecl mx1xm<xn=1mRnnn+1
32 25 ad2ant2r mx1xm<xn=1xRnnn+1
33 28 29 fsumabs mx1xm<xn=1mRnnn+1n=1mRnnn+1
34 fzfid mx1xm<x1xFin
35 21 adantl mx1xm<xn1xn
36 35 15 syl mx1xm<xn1xRnnn+1
37 36 abscld mx1xm<xn1xRnnn+1
38 36 absge0d mx1xm<xn1x0Rnnn+1
39 simplr mx1xm<xm
40 simprll mx1xm<xx
41 simprr mx1xm<xm<x
42 39 40 41 ltled mx1xm<xmx
43 flword2 mxmxxm
44 39 40 42 43 syl3anc mx1xm<xxm
45 fzss2 xm1m1x
46 44 45 syl mx1xm<x1m1x
47 34 37 38 46 fsumless mx1xm<xn=1mRnnn+1n=1xRnnn+1
48 27 31 32 33 47 letrd mx1xm<xn=1mRnnn+1n=1xRnnn+1
49 2 3 17 19 25 48 o1bddrp c+mn=1mRnnn+1c
50 49 mptru c+mn=1mRnnn+1c
51 zre mm
52 51 imim1i mn=1mRnnn+1cmn=1mRnnn+1c
53 flid mm=m
54 53 oveq2d m1m=1m
55 54 sumeq1d mn=1mRnnn+1=n=1mRnnn+1
56 55 fveq2d mn=1mRnnn+1=n=1mRnnn+1
57 56 breq1d mn=1mRnnn+1cn=1mRnnn+1c
58 52 57 mpbidi mn=1mRnnn+1cmn=1mRnnn+1c
59 58 ralimi2 mn=1mRnnn+1cmn=1mRnnn+1c
60 59 reximi c+mn=1mRnnn+1cc+mn=1mRnnn+1c
61 50 60 ax-mp c+mn=1mRnnn+1c