Description: The prime-counting function ppi at a prime. (Contributed by Mario Carneiro, 19-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ppiprm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid | |
|
2 | inss1 | |
|
3 | ssfi | |
|
4 | 1 2 3 | sylancl | |
5 | zre | |
|
6 | 5 | adantr | |
7 | 6 | ltp1d | |
8 | peano2z | |
|
9 | 8 | adantr | |
10 | 9 | zred | |
11 | 6 10 | ltnled | |
12 | 7 11 | mpbid | |
13 | elinel1 | |
|
14 | elfzle2 | |
|
15 | 13 14 | syl | |
16 | 12 15 | nsyl | |
17 | ovex | |
|
18 | hashunsng | |
|
19 | 17 18 | ax-mp | |
20 | 4 16 19 | syl2anc | |
21 | ppival2 | |
|
22 | 9 21 | syl | |
23 | 2z | |
|
24 | zcn | |
|
25 | 24 | adantr | |
26 | ax-1cn | |
|
27 | pncan | |
|
28 | 25 26 27 | sylancl | |
29 | prmuz2 | |
|
30 | 29 | adantl | |
31 | uz2m1nn | |
|
32 | 30 31 | syl | |
33 | 28 32 | eqeltrrd | |
34 | nnuz | |
|
35 | 2m1e1 | |
|
36 | 35 | fveq2i | |
37 | 34 36 | eqtr4i | |
38 | 33 37 | eleqtrdi | |
39 | fzsuc2 | |
|
40 | 23 38 39 | sylancr | |
41 | 40 | ineq1d | |
42 | indir | |
|
43 | 41 42 | eqtrdi | |
44 | simpr | |
|
45 | 44 | snssd | |
46 | df-ss | |
|
47 | 45 46 | sylib | |
48 | 47 | uneq2d | |
49 | 43 48 | eqtrd | |
50 | 49 | fveq2d | |
51 | 22 50 | eqtrd | |
52 | ppival2 | |
|
53 | 52 | adantr | |
54 | 53 | oveq1d | |
55 | 20 51 54 | 3eqtr4d | |