Metamath Proof Explorer


Theorem ppiprm

Description: The prime-counting function ppi at a prime. (Contributed by Mario Carneiro, 19-Sep-2014)

Ref Expression
Assertion ppiprm AA+1π_A+1=π_A+1

Proof

Step Hyp Ref Expression
1 fzfid AA+12AFin
2 inss1 2A2A
3 ssfi 2AFin2A2A2AFin
4 1 2 3 sylancl AA+12AFin
5 zre AA
6 5 adantr AA+1A
7 6 ltp1d AA+1A<A+1
8 peano2z AA+1
9 8 adantr AA+1A+1
10 9 zred AA+1A+1
11 6 10 ltnled AA+1A<A+1¬A+1A
12 7 11 mpbid AA+1¬A+1A
13 elinel1 A+12AA+12A
14 elfzle2 A+12AA+1A
15 13 14 syl A+12AA+1A
16 12 15 nsyl AA+1¬A+12A
17 ovex A+1V
18 hashunsng A+1V2AFin¬A+12A2AA+1=2A+1
19 17 18 ax-mp 2AFin¬A+12A2AA+1=2A+1
20 4 16 19 syl2anc AA+12AA+1=2A+1
21 ppival2 A+1π_A+1=2A+1
22 9 21 syl AA+1π_A+1=2A+1
23 2z 2
24 zcn AA
25 24 adantr AA+1A
26 ax-1cn 1
27 pncan A1A+1-1=A
28 25 26 27 sylancl AA+1A+1-1=A
29 prmuz2 A+1A+12
30 29 adantl AA+1A+12
31 uz2m1nn A+12A+1-1
32 30 31 syl AA+1A+1-1
33 28 32 eqeltrrd AA+1A
34 nnuz =1
35 2m1e1 21=1
36 35 fveq2i 21=1
37 34 36 eqtr4i =21
38 33 37 eleqtrdi AA+1A21
39 fzsuc2 2A212A+1=2AA+1
40 23 38 39 sylancr AA+12A+1=2AA+1
41 40 ineq1d AA+12A+1=2AA+1
42 indir 2AA+1=2AA+1
43 41 42 eqtrdi AA+12A+1=2AA+1
44 simpr AA+1A+1
45 44 snssd AA+1A+1
46 df-ss A+1A+1=A+1
47 45 46 sylib AA+1A+1=A+1
48 47 uneq2d AA+12AA+1=2AA+1
49 43 48 eqtrd AA+12A+1=2AA+1
50 49 fveq2d AA+12A+1=2AA+1
51 22 50 eqtrd AA+1π_A+1=2AA+1
52 ppival2 Aπ_A=2A
53 52 adantr AA+1π_A=2A
54 53 oveq1d AA+1π_A+1=2A+1
55 20 51 54 3eqtr4d AA+1π_A+1=π_A+1