| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmdiv.1 |
|
| 2 |
|
simpl1 |
|
| 3 |
|
prmz |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
simpl2 |
|
| 6 |
|
elfzelz |
|
| 7 |
6
|
ad2antrl |
|
| 8 |
5 7
|
zmulcld |
|
| 9 |
|
1z |
|
| 10 |
|
zsubcl |
|
| 11 |
8 9 10
|
sylancl |
|
| 12 |
1
|
prmdiv |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
simpld |
|
| 15 |
|
elfzelz |
|
| 16 |
14 15
|
syl |
|
| 17 |
5 16
|
zmulcld |
|
| 18 |
|
zsubcl |
|
| 19 |
17 9 18
|
sylancl |
|
| 20 |
|
simprr |
|
| 21 |
13
|
simprd |
|
| 22 |
4 11 19 20 21
|
dvds2subd |
|
| 23 |
8
|
zcnd |
|
| 24 |
17
|
zcnd |
|
| 25 |
|
1cnd |
|
| 26 |
23 24 25
|
nnncan2d |
|
| 27 |
5
|
zcnd |
|
| 28 |
|
elfznn0 |
|
| 29 |
28
|
ad2antrl |
|
| 30 |
29
|
nn0red |
|
| 31 |
30
|
recnd |
|
| 32 |
16
|
zcnd |
|
| 33 |
27 31 32
|
subdid |
|
| 34 |
26 33
|
eqtr4d |
|
| 35 |
22 34
|
breqtrd |
|
| 36 |
|
simpl3 |
|
| 37 |
|
coprm |
|
| 38 |
2 5 37
|
syl2anc |
|
| 39 |
36 38
|
mpbid |
|
| 40 |
7 16
|
zsubcld |
|
| 41 |
|
coprmdvds |
|
| 42 |
4 5 40 41
|
syl3anc |
|
| 43 |
35 39 42
|
mp2and |
|
| 44 |
|
prmnn |
|
| 45 |
2 44
|
syl |
|
| 46 |
|
moddvds |
|
| 47 |
45 7 16 46
|
syl3anc |
|
| 48 |
43 47
|
mpbird |
|
| 49 |
45
|
nnrpd |
|
| 50 |
|
elfzle1 |
|
| 51 |
50
|
ad2antrl |
|
| 52 |
|
elfzle2 |
|
| 53 |
52
|
ad2antrl |
|
| 54 |
|
zltlem1 |
|
| 55 |
7 4 54
|
syl2anc |
|
| 56 |
53 55
|
mpbird |
|
| 57 |
|
modid |
|
| 58 |
30 49 51 56 57
|
syl22anc |
|
| 59 |
|
prmuz2 |
|
| 60 |
|
uznn0sub |
|
| 61 |
2 59 60
|
3syl |
|
| 62 |
|
zexpcl |
|
| 63 |
5 61 62
|
syl2anc |
|
| 64 |
63
|
zred |
|
| 65 |
|
modabs2 |
|
| 66 |
64 49 65
|
syl2anc |
|
| 67 |
1
|
oveq1i |
|
| 68 |
66 67 1
|
3eqtr4g |
|
| 69 |
48 58 68
|
3eqtr3d |
|
| 70 |
69
|
ex |
|
| 71 |
|
fz1ssfz0 |
|
| 72 |
71
|
sseli |
|
| 73 |
|
eleq1 |
|
| 74 |
72 73
|
imbitrrid |
|
| 75 |
|
oveq2 |
|
| 76 |
75
|
oveq1d |
|
| 77 |
76
|
breq2d |
|
| 78 |
77
|
biimprd |
|
| 79 |
74 78
|
anim12d |
|
| 80 |
12 79
|
syl5com |
|
| 81 |
70 80
|
impbid |
|