Metamath Proof Explorer


Theorem prmdiveq

Description: The modular inverse of A mod P is unique. (Contributed by Mario Carneiro, 24-Jan-2015)

Ref Expression
Hypothesis prmdiv.1 R=AP2modP
Assertion prmdiveq PA¬PAS0P1PAS1S=R

Proof

Step Hyp Ref Expression
1 prmdiv.1 R=AP2modP
2 simpl1 PA¬PAS0P1PAS1P
3 prmz PP
4 2 3 syl PA¬PAS0P1PAS1P
5 simpl2 PA¬PAS0P1PAS1A
6 elfzelz S0P1S
7 6 ad2antrl PA¬PAS0P1PAS1S
8 5 7 zmulcld PA¬PAS0P1PAS1AS
9 1z 1
10 zsubcl AS1AS1
11 8 9 10 sylancl PA¬PAS0P1PAS1AS1
12 1 prmdiv PA¬PAR1P1PAR1
13 12 adantr PA¬PAS0P1PAS1R1P1PAR1
14 13 simpld PA¬PAS0P1PAS1R1P1
15 elfzelz R1P1R
16 14 15 syl PA¬PAS0P1PAS1R
17 5 16 zmulcld PA¬PAS0P1PAS1AR
18 zsubcl AR1AR1
19 17 9 18 sylancl PA¬PAS0P1PAS1AR1
20 simprr PA¬PAS0P1PAS1PAS1
21 13 simprd PA¬PAS0P1PAS1PAR1
22 4 11 19 20 21 dvds2subd PA¬PAS0P1PAS1PAS-1-AR1
23 8 zcnd PA¬PAS0P1PAS1AS
24 17 zcnd PA¬PAS0P1PAS1AR
25 1cnd PA¬PAS0P1PAS11
26 23 24 25 nnncan2d PA¬PAS0P1PAS1AS-1-AR1=ASAR
27 5 zcnd PA¬PAS0P1PAS1A
28 elfznn0 S0P1S0
29 28 ad2antrl PA¬PAS0P1PAS1S0
30 29 nn0red PA¬PAS0P1PAS1S
31 30 recnd PA¬PAS0P1PAS1S
32 16 zcnd PA¬PAS0P1PAS1R
33 27 31 32 subdid PA¬PAS0P1PAS1ASR=ASAR
34 26 33 eqtr4d PA¬PAS0P1PAS1AS-1-AR1=ASR
35 22 34 breqtrd PA¬PAS0P1PAS1PASR
36 simpl3 PA¬PAS0P1PAS1¬PA
37 coprm PA¬PAPgcdA=1
38 2 5 37 syl2anc PA¬PAS0P1PAS1¬PAPgcdA=1
39 36 38 mpbid PA¬PAS0P1PAS1PgcdA=1
40 7 16 zsubcld PA¬PAS0P1PAS1SR
41 coprmdvds PASRPASRPgcdA=1PSR
42 4 5 40 41 syl3anc PA¬PAS0P1PAS1PASRPgcdA=1PSR
43 35 39 42 mp2and PA¬PAS0P1PAS1PSR
44 prmnn PP
45 2 44 syl PA¬PAS0P1PAS1P
46 moddvds PSRSmodP=RmodPPSR
47 45 7 16 46 syl3anc PA¬PAS0P1PAS1SmodP=RmodPPSR
48 43 47 mpbird PA¬PAS0P1PAS1SmodP=RmodP
49 45 nnrpd PA¬PAS0P1PAS1P+
50 elfzle1 S0P10S
51 50 ad2antrl PA¬PAS0P1PAS10S
52 elfzle2 S0P1SP1
53 52 ad2antrl PA¬PAS0P1PAS1SP1
54 zltlem1 SPS<PSP1
55 7 4 54 syl2anc PA¬PAS0P1PAS1S<PSP1
56 53 55 mpbird PA¬PAS0P1PAS1S<P
57 modid SP+0SS<PSmodP=S
58 30 49 51 56 57 syl22anc PA¬PAS0P1PAS1SmodP=S
59 prmuz2 PP2
60 uznn0sub P2P20
61 2 59 60 3syl PA¬PAS0P1PAS1P20
62 zexpcl AP20AP2
63 5 61 62 syl2anc PA¬PAS0P1PAS1AP2
64 63 zred PA¬PAS0P1PAS1AP2
65 modabs2 AP2P+AP2modPmodP=AP2modP
66 64 49 65 syl2anc PA¬PAS0P1PAS1AP2modPmodP=AP2modP
67 1 oveq1i RmodP=AP2modPmodP
68 66 67 1 3eqtr4g PA¬PAS0P1PAS1RmodP=R
69 48 58 68 3eqtr3d PA¬PAS0P1PAS1S=R
70 69 ex PA¬PAS0P1PAS1S=R
71 fz1ssfz0 1P10P1
72 71 sseli R1P1R0P1
73 eleq1 S=RS0P1R0P1
74 72 73 imbitrrid S=RR1P1S0P1
75 oveq2 S=RAS=AR
76 75 oveq1d S=RAS1=AR1
77 76 breq2d S=RPAS1PAR1
78 77 biimprd S=RPAR1PAS1
79 74 78 anim12d S=RR1P1PAR1S0P1PAS1
80 12 79 syl5com PA¬PAS=RS0P1PAS1
81 70 80 impbid PA¬PAS0P1PAS1S=R