Metamath Proof Explorer


Theorem prmgaplem5

Description: Lemma for prmgap : for each integer greater than 2 there is a smaller prime closest to this integer, i.e. there is a smaller prime and no other prime is between this prime and the integer. (Contributed by AV, 9-Aug-2020)

Ref Expression
Assertion prmgaplem5 N3pp<Nzp+1..^Nz

Proof

Step Hyp Ref Expression
1 elrabi rq|q<Nr
2 1 ad2antlr N3rq|q<Nzq|q<Nzrr
3 breq1 p=rp<Nr<N
4 oveq1 p=rp+1=r+1
5 4 oveq1d p=rp+1..^N=r+1..^N
6 5 raleqdv p=rzp+1..^Nzzr+1..^Nz
7 3 6 anbi12d p=rp<Nzp+1..^Nzr<Nzr+1..^Nz
8 7 adantl N3rq|q<Nzq|q<Nzrp=rp<Nzp+1..^Nzr<Nzr+1..^Nz
9 breq1 q=rq<Nr<N
10 9 elrab rq|q<Nrr<N
11 10 simprbi rq|q<Nr<N
12 11 ad2antlr N3rq|q<Nzq|q<Nzrr<N
13 elfzo2 zr+1..^Nzr+1Nz<N
14 breq1 q=zq<Nz<N
15 simpl zzr+1Nz<Nz
16 simpr3 zzr+1Nz<Nz<N
17 14 15 16 elrabd zzr+1Nz<Nzq|q<N
18 17 adantrl zN3rq|q<Nzr+1Nz<Nzq|q<N
19 eluz2 zr+1r+1zr+1z
20 prmz rr
21 zltp1le rzr<zr+1z
22 20 21 sylan rzr<zr+1z
23 prmnn rr
24 23 nnred rr
25 zre zz
26 ltnle rzr<z¬zr
27 26 biimpd rzr<z¬zr
28 24 25 27 syl2an rzr<z¬zr
29 pm2.21 ¬zrzrz
30 28 29 syl6 rzr<zzrz
31 22 30 sylbird rzr+1zzrz
32 31 expcom zrr+1zzrz
33 32 com23 zr+1zrzrz
34 33 a1i r+1zr+1zrzrz
35 34 3imp r+1zr+1zrzrz
36 19 35 sylbi zr+1rzrz
37 36 3ad2ant1 zr+1Nz<Nrzrz
38 1 37 syl5com rq|q<Nzr+1Nz<Nzrz
39 38 adantl N3rq|q<Nzr+1Nz<Nzrz
40 39 imp N3rq|q<Nzr+1Nz<Nzrz
41 40 adantl zN3rq|q<Nzr+1Nz<Nzrz
42 18 41 embantd zN3rq|q<Nzr+1Nz<Nzq|q<Nzrz
43 42 ex zN3rq|q<Nzr+1Nz<Nzq|q<Nzrz
44 df-nel z¬z
45 2a1 zN3rq|q<Nzr+1Nz<Nzq|q<Nzrz
46 44 45 sylbir ¬zN3rq|q<Nzr+1Nz<Nzq|q<Nzrz
47 43 46 pm2.61i N3rq|q<Nzr+1Nz<Nzq|q<Nzrz
48 47 impancom N3rq|q<Nzq|q<Nzrzr+1Nz<Nz
49 13 48 biimtrid N3rq|q<Nzq|q<Nzrzr+1..^Nz
50 49 ex N3rq|q<Nzq|q<Nzrzr+1..^Nz
51 50 ralimdv2 N3rq|q<Nzq|q<Nzrzr+1..^Nz
52 51 imp N3rq|q<Nzq|q<Nzrzr+1..^Nz
53 12 52 jca N3rq|q<Nzq|q<Nzrr<Nzr+1..^Nz
54 2 8 53 rspcedvd N3rq|q<Nzq|q<Nzrpp<Nzp+1..^Nz
55 eqid q|q<N=q|q<N
56 55 prmgaplem3 N3rq|q<Nzq|q<Nzr
57 54 56 r19.29a N3pp<Nzp+1..^Nz