Description: Lemma for prmgap : for each integer greater than 2 there is a smaller prime closest to this integer, i.e. there is a smaller prime and no other prime is between this prime and the integer. (Contributed by AV, 9-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | prmgaplem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrabi | |
|
2 | 1 | ad2antlr | |
3 | breq1 | |
|
4 | oveq1 | |
|
5 | 4 | oveq1d | |
6 | 5 | raleqdv | |
7 | 3 6 | anbi12d | |
8 | 7 | adantl | |
9 | breq1 | |
|
10 | 9 | elrab | |
11 | 10 | simprbi | |
12 | 11 | ad2antlr | |
13 | elfzo2 | |
|
14 | breq1 | |
|
15 | simpl | |
|
16 | simpr3 | |
|
17 | 14 15 16 | elrabd | |
18 | 17 | adantrl | |
19 | eluz2 | |
|
20 | prmz | |
|
21 | zltp1le | |
|
22 | 20 21 | sylan | |
23 | prmnn | |
|
24 | 23 | nnred | |
25 | zre | |
|
26 | ltnle | |
|
27 | 26 | biimpd | |
28 | 24 25 27 | syl2an | |
29 | pm2.21 | |
|
30 | 28 29 | syl6 | |
31 | 22 30 | sylbird | |
32 | 31 | expcom | |
33 | 32 | com23 | |
34 | 33 | a1i | |
35 | 34 | 3imp | |
36 | 19 35 | sylbi | |
37 | 36 | 3ad2ant1 | |
38 | 1 37 | syl5com | |
39 | 38 | adantl | |
40 | 39 | imp | |
41 | 40 | adantl | |
42 | 18 41 | embantd | |
43 | 42 | ex | |
44 | df-nel | |
|
45 | 2a1 | |
|
46 | 44 45 | sylbir | |
47 | 43 46 | pm2.61i | |
48 | 47 | impancom | |
49 | 13 48 | biimtrid | |
50 | 49 | ex | |
51 | 50 | ralimdv2 | |
52 | 51 | imp | |
53 | 12 52 | jca | |
54 | 2 8 53 | rspcedvd | |
55 | eqid | |
|
56 | 55 | prmgaplem3 | |
57 | 54 56 | r19.29a | |