Metamath Proof Explorer


Theorem prmorcht

Description: Relate the primorial (product of the first n primes) to the Chebyshev function. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Hypothesis prmorcht.1 F=nifnn1
Assertion prmorcht AeθA=seq1×FA

Proof

Step Hyp Ref Expression
1 prmorcht.1 F=nifnn1
2 nnre AA
3 chtval AθA=k0Alogk
4 2 3 syl AθA=k0Alogk
5 2eluzge1 21
6 ppisval2 A210A=1A
7 2 5 6 sylancl A0A=1A
8 nnz AA
9 flid AA=A
10 8 9 syl AA=A
11 10 oveq2d A1A=1A
12 11 ineq1d A1A=1A
13 7 12 eqtrd A0A=1A
14 13 sumeq1d Ak0Alogk=k1Alogk
15 inss1 1A1A
16 elinel1 k1Ak1A
17 elfznn k1Ak
18 17 adantl Ak1Ak
19 18 nnrpd Ak1Ak+
20 19 relogcld Ak1Alogk
21 20 recnd Ak1Alogk
22 16 21 sylan2 Ak1Alogk
23 22 ralrimiva Ak1Alogk
24 fzfi 1AFin
25 24 olci 1A11AFin
26 sumss2 1A1Ak1Alogk1A11AFink1Alogk=k=1Aifk1Alogk0
27 25 26 mpan2 1A1Ak1Alogkk1Alogk=k=1Aifk1Alogk0
28 15 23 27 sylancr Ak1Alogk=k=1Aifk1Alogk0
29 14 28 eqtrd Ak0Alogk=k=1Aifk1Alogk0
30 4 29 eqtrd AθA=k=1Aifk1Alogk0
31 elin k1Ak1Ak
32 31 baibr k1Akk1A
33 32 ifbid k1Aifklogk0=ifk1Alogk0
34 33 sumeq2i k=1Aifklogk0=k=1Aifk1Alogk0
35 30 34 eqtr4di AθA=k=1Aifklogk0
36 eleq1w n=knk
37 fveq2 n=klogn=logk
38 36 37 ifbieq1d n=kifnlogn0=ifklogk0
39 eqid nifnlogn0=nifnlogn0
40 fvex logkV
41 0cn 0
42 41 elexi 0V
43 40 42 ifex ifklogk0V
44 38 39 43 fvmpt knifnlogn0k=ifklogk0
45 18 44 syl Ak1Anifnlogn0k=ifklogk0
46 elnnuz AA1
47 46 biimpi AA1
48 ifcl logk0ifklogk0
49 21 41 48 sylancl Ak1Aifklogk0
50 45 47 49 fsumser Ak=1Aifklogk0=seq1+nifnlogn0A
51 35 50 eqtrd AθA=seq1+nifnlogn0A
52 51 fveq2d AeθA=eseq1+nifnlogn0A
53 addcl kpk+p
54 53 adantl Akpk+p
55 45 49 eqeltrd Ak1Anifnlogn0k
56 efadd kpek+p=ekep
57 56 adantl Akpek+p=ekep
58 1nn 1
59 ifcl k1ifkk1
60 18 58 59 sylancl Ak1Aifkk1
61 60 nnrpd Ak1Aifkk1+
62 61 reeflogd Ak1Aelogifkk1=ifkk1
63 fvif logifkk1=ifklogklog1
64 log1 log1=0
65 ifeq2 log1=0ifklogklog1=ifklogk0
66 64 65 ax-mp ifklogklog1=ifklogk0
67 63 66 eqtri logifkk1=ifklogk0
68 45 67 eqtr4di Ak1Anifnlogn0k=logifkk1
69 68 fveq2d Ak1Aenifnlogn0k=elogifkk1
70 id n=kn=k
71 36 70 ifbieq1d n=kifnn1=ifkk1
72 vex kV
73 58 elexi 1V
74 72 73 ifex ifkk1V
75 71 1 74 fvmpt kFk=ifkk1
76 18 75 syl Ak1AFk=ifkk1
77 62 69 76 3eqtr4d Ak1Aenifnlogn0k=Fk
78 54 55 47 57 77 seqhomo Aeseq1+nifnlogn0A=seq1×FA
79 52 78 eqtrd AeθA=seq1×FA