Description: If an integral domain has a primitive N -th root of unity, it has exactly ( phiN ) of them. (Contributed by Stefan O'Rear, 12-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | proot1hash.g | |
|
proot1hash.o | |
||
Assertion | proot1hash | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | proot1hash.g | |
|
2 | proot1hash.o | |
|
3 | eqid | |
|
4 | 3 2 | odf | |
5 | ffn | |
|
6 | fniniseg2 | |
|
7 | 4 5 6 | mp2b | |
8 | simp3 | |
|
9 | fniniseg | |
|
10 | 4 5 9 | mp2b | |
11 | 8 10 | sylib | |
12 | 11 | simprd | |
13 | 12 | eqeq2d | |
14 | 13 | rabbidv | |
15 | isidom | |
|
16 | 15 | simprbi | |
17 | 16 | 3ad2ant1 | |
18 | domnring | |
|
19 | eqid | |
|
20 | 19 1 | unitgrp | |
21 | 17 18 20 | 3syl | |
22 | 3 | subgacs | |
23 | acsmre | |
|
24 | 21 22 23 | 3syl | |
25 | eqid | |
|
26 | 25 | mrcssv | |
27 | dfrab3ss | |
|
28 | 24 26 27 | 3syl | |
29 | incom | |
|
30 | simpl1 | |
|
31 | simpl2 | |
|
32 | simpr | |
|
33 | simpl3 | |
|
34 | 1 2 25 | proot1mul | |
35 | 30 31 32 33 34 | syl22anc | |
36 | 35 | ex | |
37 | 36 | ssrdv | |
38 | 7 37 | eqsstrrid | |
39 | df-ss | |
|
40 | 38 39 | sylib | |
41 | 29 40 | eqtrid | |
42 | 14 28 41 | 3eqtrrd | |
43 | 7 42 | eqtrid | |
44 | 43 | fveq2d | |
45 | 11 | simpld | |
46 | simp2 | |
|
47 | 12 46 | eqeltrd | |
48 | 3 2 25 | odngen | |
49 | 21 45 47 48 | syl3anc | |
50 | 12 | fveq2d | |
51 | 44 49 50 | 3eqtrd | |