| Step | Hyp | Ref | Expression | 
						
							| 1 |  | proot1hash.g |  | 
						
							| 2 |  | proot1hash.o |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 | 3 2 | odf |  | 
						
							| 5 |  | ffn |  | 
						
							| 6 |  | fniniseg2 |  | 
						
							| 7 | 4 5 6 | mp2b |  | 
						
							| 8 |  | simp3 |  | 
						
							| 9 |  | fniniseg |  | 
						
							| 10 | 4 5 9 | mp2b |  | 
						
							| 11 | 8 10 | sylib |  | 
						
							| 12 | 11 | simprd |  | 
						
							| 13 | 12 | eqeq2d |  | 
						
							| 14 | 13 | rabbidv |  | 
						
							| 15 |  | isidom |  | 
						
							| 16 | 15 | simprbi |  | 
						
							| 17 | 16 | 3ad2ant1 |  | 
						
							| 18 |  | domnring |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 19 1 | unitgrp |  | 
						
							| 21 | 17 18 20 | 3syl |  | 
						
							| 22 | 3 | subgacs |  | 
						
							| 23 |  | acsmre |  | 
						
							| 24 | 21 22 23 | 3syl |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 25 | mrcssv |  | 
						
							| 27 |  | dfrab3ss |  | 
						
							| 28 | 24 26 27 | 3syl |  | 
						
							| 29 |  | incom |  | 
						
							| 30 |  | simpl1 |  | 
						
							| 31 |  | simpl2 |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 |  | simpl3 |  | 
						
							| 34 | 1 2 25 | proot1mul |  | 
						
							| 35 | 30 31 32 33 34 | syl22anc |  | 
						
							| 36 | 35 | ex |  | 
						
							| 37 | 36 | ssrdv |  | 
						
							| 38 | 7 37 | eqsstrrid |  | 
						
							| 39 |  | dfss2 |  | 
						
							| 40 | 38 39 | sylib |  | 
						
							| 41 | 29 40 | eqtrid |  | 
						
							| 42 | 14 28 41 | 3eqtrrd |  | 
						
							| 43 | 7 42 | eqtrid |  | 
						
							| 44 | 43 | fveq2d |  | 
						
							| 45 | 11 | simpld |  | 
						
							| 46 |  | simp2 |  | 
						
							| 47 | 12 46 | eqeltrd |  | 
						
							| 48 | 3 2 25 | odngen |  | 
						
							| 49 | 21 45 47 48 | syl3anc |  | 
						
							| 50 | 12 | fveq2d |  | 
						
							| 51 | 44 49 50 | 3eqtrd |  |