Description: Bag complementation is a bijection on the set of bags dominated by a given bag F . (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | psrbag.d | |
|
psrbagconf1o.s | |
||
Assertion | psrbagconf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrbag.d | |
|
2 | psrbagconf1o.s | |
|
3 | eqid | |
|
4 | 1 2 | psrbagconcl | |
5 | 1 2 | psrbagconcl | |
6 | 1 | psrbagf | |
7 | 6 | adantr | |
8 | 7 | ffvelcdmda | |
9 | 2 | ssrab3 | |
10 | 9 | sseli | |
11 | 10 | adantl | |
12 | 1 | psrbagf | |
13 | 11 12 | syl | |
14 | 13 | adantrl | |
15 | 14 | ffvelcdmda | |
16 | simprl | |
|
17 | 9 16 | sselid | |
18 | 1 | psrbagf | |
19 | 17 18 | syl | |
20 | 19 | ffvelcdmda | |
21 | nn0cn | |
|
22 | nn0cn | |
|
23 | nn0cn | |
|
24 | subsub23 | |
|
25 | 21 22 23 24 | syl3an | |
26 | 8 15 20 25 | syl3anc | |
27 | eqcom | |
|
28 | eqcom | |
|
29 | 26 27 28 | 3bitr4g | |
30 | 6 | ffnd | |
31 | 30 | adantr | |
32 | 13 | ffnd | |
33 | 32 | adantrl | |
34 | 19 | ffnd | |
35 | 16 34 | fndmexd | |
36 | inidm | |
|
37 | eqidd | |
|
38 | eqidd | |
|
39 | 31 33 35 35 36 37 38 | ofval | |
40 | 39 | eqeq2d | |
41 | eqidd | |
|
42 | 31 34 35 35 36 37 41 | ofval | |
43 | 42 | eqeq2d | |
44 | 29 40 43 | 3bitr4d | |
45 | 44 | ralbidva | |
46 | 5 | adantrl | |
47 | 9 46 | sselid | |
48 | 1 | psrbagf | |
49 | 47 48 | syl | |
50 | 49 | ffnd | |
51 | eqfnfv | |
|
52 | 34 50 51 | syl2anc | |
53 | 9 4 | sselid | |
54 | 1 | psrbagf | |
55 | 53 54 | syl | |
56 | 55 | ffnd | |
57 | 56 | adantrr | |
58 | eqfnfv | |
|
59 | 33 57 58 | syl2anc | |
60 | 45 52 59 | 3bitr4d | |
61 | 3 4 5 60 | f1o2d | |