Metamath Proof Explorer


Theorem psrbagconf1o

Description: Bag complementation is a bijection on the set of bags dominated by a given bag F . (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024)

Ref Expression
Hypotheses psrbag.d D=f0I|f-1Fin
psrbagconf1o.s S=yD|yfF
Assertion psrbagconf1o FDxSFfx:S1-1 ontoS

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 psrbagconf1o.s S=yD|yfF
3 eqid xSFfx=xSFfx
4 1 2 psrbagconcl FDxSFfxS
5 1 2 psrbagconcl FDzSFfzS
6 1 psrbagf FDF:I0
7 6 adantr FDxSzSF:I0
8 7 ffvelcdmda FDxSzSnIFn0
9 2 ssrab3 SD
10 9 sseli zSzD
11 10 adantl FDzSzD
12 1 psrbagf zDz:I0
13 11 12 syl FDzSz:I0
14 13 adantrl FDxSzSz:I0
15 14 ffvelcdmda FDxSzSnIzn0
16 simprl FDxSzSxS
17 9 16 sselid FDxSzSxD
18 1 psrbagf xDx:I0
19 17 18 syl FDxSzSx:I0
20 19 ffvelcdmda FDxSzSnIxn0
21 nn0cn Fn0Fn
22 nn0cn zn0zn
23 nn0cn xn0xn
24 subsub23 FnznxnFnzn=xnFnxn=zn
25 21 22 23 24 syl3an Fn0zn0xn0Fnzn=xnFnxn=zn
26 8 15 20 25 syl3anc FDxSzSnIFnzn=xnFnxn=zn
27 eqcom xn=FnznFnzn=xn
28 eqcom zn=FnxnFnxn=zn
29 26 27 28 3bitr4g FDxSzSnIxn=Fnznzn=Fnxn
30 6 ffnd FDFFnI
31 30 adantr FDxSzSFFnI
32 13 ffnd FDzSzFnI
33 32 adantrl FDxSzSzFnI
34 19 ffnd FDxSzSxFnI
35 16 34 fndmexd FDxSzSIV
36 inidm II=I
37 eqidd FDxSzSnIFn=Fn
38 eqidd FDxSzSnIzn=zn
39 31 33 35 35 36 37 38 ofval FDxSzSnIFfzn=Fnzn
40 39 eqeq2d FDxSzSnIxn=Ffznxn=Fnzn
41 eqidd FDxSzSnIxn=xn
42 31 34 35 35 36 37 41 ofval FDxSzSnIFfxn=Fnxn
43 42 eqeq2d FDxSzSnIzn=Ffxnzn=Fnxn
44 29 40 43 3bitr4d FDxSzSnIxn=Ffznzn=Ffxn
45 44 ralbidva FDxSzSnIxn=FfznnIzn=Ffxn
46 5 adantrl FDxSzSFfzS
47 9 46 sselid FDxSzSFfzD
48 1 psrbagf FfzDFfz:I0
49 47 48 syl FDxSzSFfz:I0
50 49 ffnd FDxSzSFfzFnI
51 eqfnfv xFnIFfzFnIx=FfznIxn=Ffzn
52 34 50 51 syl2anc FDxSzSx=FfznIxn=Ffzn
53 9 4 sselid FDxSFfxD
54 1 psrbagf FfxDFfx:I0
55 53 54 syl FDxSFfx:I0
56 55 ffnd FDxSFfxFnI
57 56 adantrr FDxSzSFfxFnI
58 eqfnfv zFnIFfxFnIz=FfxnIzn=Ffxn
59 33 57 58 syl2anc FDxSzSz=FfxnIzn=Ffxn
60 45 52 59 3bitr4d FDxSzSx=Ffzz=Ffx
61 3 4 5 60 f1o2d FDxSFfx:S1-1 ontoS