Metamath Proof Explorer


Theorem psrbagconf1oOLD

Description: Obsolete version of psrbagconf1o as of 6-Aug-2024. (Contributed by Mario Carneiro, 29-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses psrbag.d D=f0I|f-1Fin
psrbagconf1o.s S=yD|yfF
Assertion psrbagconf1oOLD IVFDxSFfx:S1-1 ontoS

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 psrbagconf1o.s S=yD|yfF
3 eqid xSFfx=xSFfx
4 simpll IVFDxSIV
5 simplr IVFDxSFD
6 simpr IVFDxSxS
7 breq1 y=xyfFxfF
8 7 2 elrab2 xSxDxfF
9 6 8 sylib IVFDxSxDxfF
10 9 simpld IVFDxSxD
11 1 psrbagfOLD IVxDx:I0
12 4 10 11 syl2anc IVFDxSx:I0
13 9 simprd IVFDxSxfF
14 1 psrbagconOLD IVFDx:I0xfFFfxDFfxfF
15 4 5 12 13 14 syl13anc IVFDxSFfxDFfxfF
16 breq1 y=FfxyfFFfxfF
17 16 2 elrab2 FfxSFfxDFfxfF
18 15 17 sylibr IVFDxSFfxS
19 18 ralrimiva IVFDxSFfxS
20 oveq2 x=zFfx=Ffz
21 20 eleq1d x=zFfxSFfzS
22 21 rspccva xSFfxSzSFfzS
23 19 22 sylan IVFDzSFfzS
24 1 psrbagfOLD IVFDF:I0
25 24 adantr IVFDxSzSF:I0
26 25 ffvelcdmda IVFDxSzSnIFn0
27 simpll IVFDxSzSIV
28 2 ssrab3 SD
29 simprr IVFDxSzSzS
30 28 29 sselid IVFDxSzSzD
31 1 psrbagfOLD IVzDz:I0
32 27 30 31 syl2anc IVFDxSzSz:I0
33 32 ffvelcdmda IVFDxSzSnIzn0
34 12 adantrr IVFDxSzSx:I0
35 34 ffvelcdmda IVFDxSzSnIxn0
36 nn0cn Fn0Fn
37 nn0cn zn0zn
38 nn0cn xn0xn
39 subsub23 FnznxnFnzn=xnFnxn=zn
40 36 37 38 39 syl3an Fn0zn0xn0Fnzn=xnFnxn=zn
41 26 33 35 40 syl3anc IVFDxSzSnIFnzn=xnFnxn=zn
42 eqcom xn=FnznFnzn=xn
43 eqcom zn=FnxnFnxn=zn
44 41 42 43 3bitr4g IVFDxSzSnIxn=Fnznzn=Fnxn
45 25 ffnd IVFDxSzSFFnI
46 32 ffnd IVFDxSzSzFnI
47 inidm II=I
48 eqidd IVFDxSzSnIFn=Fn
49 eqidd IVFDxSzSnIzn=zn
50 45 46 27 27 47 48 49 ofval IVFDxSzSnIFfzn=Fnzn
51 50 eqeq2d IVFDxSzSnIxn=Ffznxn=Fnzn
52 34 ffnd IVFDxSzSxFnI
53 eqidd IVFDxSzSnIxn=xn
54 45 52 27 27 47 48 53 ofval IVFDxSzSnIFfxn=Fnxn
55 54 eqeq2d IVFDxSzSnIzn=Ffxnzn=Fnxn
56 44 51 55 3bitr4d IVFDxSzSnIxn=Ffznzn=Ffxn
57 56 ralbidva IVFDxSzSnIxn=FfznnIzn=Ffxn
58 23 adantrl IVFDxSzSFfzS
59 28 58 sselid IVFDxSzSFfzD
60 1 psrbagfOLD IVFfzDFfz:I0
61 27 59 60 syl2anc IVFDxSzSFfz:I0
62 61 ffnd IVFDxSzSFfzFnI
63 eqfnfv xFnIFfzFnIx=FfznIxn=Ffzn
64 52 62 63 syl2anc IVFDxSzSx=FfznIxn=Ffzn
65 18 adantrr IVFDxSzSFfxS
66 28 65 sselid IVFDxSzSFfxD
67 1 psrbagfOLD IVFfxDFfx:I0
68 27 66 67 syl2anc IVFDxSzSFfx:I0
69 68 ffnd IVFDxSzSFfxFnI
70 eqfnfv zFnIFfxFnIz=FfxnIzn=Ffxn
71 46 69 70 syl2anc IVFDxSzSz=FfxnIzn=Ffxn
72 57 64 71 3bitr4d IVFDxSzSx=Ffzz=Ffx
73 3 18 23 72 f1o2d IVFDxSFfx:S1-1 ontoS