Metamath Proof Explorer


Theorem psrlmod

Description: The ring of power series is a left module. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrring.s S=ImPwSerR
psrring.i φIV
psrring.r φRRing
Assertion psrlmod φSLMod

Proof

Step Hyp Ref Expression
1 psrring.s S=ImPwSerR
2 psrring.i φIV
3 psrring.r φRRing
4 eqidd φBaseS=BaseS
5 eqidd φ+S=+S
6 1 2 3 psrsca φR=ScalarS
7 eqidd φS=S
8 eqidd φBaseR=BaseR
9 eqidd φ+R=+R
10 eqidd φR=R
11 eqidd φ1R=1R
12 ringgrp RRingRGrp
13 3 12 syl φRGrp
14 1 2 13 psrgrp φSGrp
15 eqid S=S
16 eqid BaseR=BaseR
17 eqid BaseS=BaseS
18 3 3ad2ant1 φxBaseRyBaseSRRing
19 simp2 φxBaseRyBaseSxBaseR
20 simp3 φxBaseRyBaseSyBaseS
21 1 15 16 17 18 19 20 psrvscacl φxBaseRyBaseSxSyBaseS
22 ovex 0IV
23 22 rabex f0I|f-1FinV
24 23 a1i φxBaseRyBaseSzBaseSf0I|f-1FinV
25 simpr1 φxBaseRyBaseSzBaseSxBaseR
26 fconst6g xBaseRf0I|f-1Fin×x:f0I|f-1FinBaseR
27 25 26 syl φxBaseRyBaseSzBaseSf0I|f-1Fin×x:f0I|f-1FinBaseR
28 eqid f0I|f-1Fin=f0I|f-1Fin
29 simpr2 φxBaseRyBaseSzBaseSyBaseS
30 1 16 28 17 29 psrelbas φxBaseRyBaseSzBaseSy:f0I|f-1FinBaseR
31 simpr3 φxBaseRyBaseSzBaseSzBaseS
32 1 16 28 17 31 psrelbas φxBaseRyBaseSzBaseSz:f0I|f-1FinBaseR
33 3 adantr φxBaseRyBaseSzBaseSRRing
34 eqid +R=+R
35 eqid R=R
36 16 34 35 ringdi RRingrBaseRsBaseRtBaseRrRs+Rt=rRs+RrRt
37 33 36 sylan φxBaseRyBaseSzBaseSrBaseRsBaseRtBaseRrRs+Rt=rRs+RrRt
38 24 27 30 32 37 caofdi φxBaseRyBaseSzBaseSf0I|f-1Fin×xRfy+Rfz=f0I|f-1Fin×xRfy+Rff0I|f-1Fin×xRfz
39 eqid +S=+S
40 1 17 34 39 29 31 psradd φxBaseRyBaseSzBaseSy+Sz=y+Rfz
41 40 oveq2d φxBaseRyBaseSzBaseSf0I|f-1Fin×xRfy+Sz=f0I|f-1Fin×xRfy+Rfz
42 1 15 16 17 35 28 25 29 psrvsca φxBaseRyBaseSzBaseSxSy=f0I|f-1Fin×xRfy
43 1 15 16 17 35 28 25 31 psrvsca φxBaseRyBaseSzBaseSxSz=f0I|f-1Fin×xRfz
44 42 43 oveq12d φxBaseRyBaseSzBaseSxSy+RfxSz=f0I|f-1Fin×xRfy+Rff0I|f-1Fin×xRfz
45 38 41 44 3eqtr4d φxBaseRyBaseSzBaseSf0I|f-1Fin×xRfy+Sz=xSy+RfxSz
46 13 adantr φxBaseRyBaseSzBaseSRGrp
47 1 17 39 46 29 31 psraddcl φxBaseRyBaseSzBaseSy+SzBaseS
48 1 15 16 17 35 28 25 47 psrvsca φxBaseRyBaseSzBaseSxSy+Sz=f0I|f-1Fin×xRfy+Sz
49 21 3adant3r3 φxBaseRyBaseSzBaseSxSyBaseS
50 1 15 16 17 33 25 31 psrvscacl φxBaseRyBaseSzBaseSxSzBaseS
51 1 17 34 39 49 50 psradd φxBaseRyBaseSzBaseSxSy+SxSz=xSy+RfxSz
52 45 48 51 3eqtr4d φxBaseRyBaseSzBaseSxSy+Sz=xSy+SxSz
53 simpr1 φxBaseRyBaseRzBaseSxBaseR
54 simpr3 φxBaseRyBaseRzBaseSzBaseS
55 1 15 16 17 35 28 53 54 psrvsca φxBaseRyBaseRzBaseSxSz=f0I|f-1Fin×xRfz
56 simpr2 φxBaseRyBaseRzBaseSyBaseR
57 1 15 16 17 35 28 56 54 psrvsca φxBaseRyBaseRzBaseSySz=f0I|f-1Fin×yRfz
58 55 57 oveq12d φxBaseRyBaseRzBaseSxSz+RfySz=f0I|f-1Fin×xRfz+Rff0I|f-1Fin×yRfz
59 23 a1i φxBaseRyBaseRzBaseSf0I|f-1FinV
60 1 16 28 17 54 psrelbas φxBaseRyBaseRzBaseSz:f0I|f-1FinBaseR
61 53 26 syl φxBaseRyBaseRzBaseSf0I|f-1Fin×x:f0I|f-1FinBaseR
62 fconst6g yBaseRf0I|f-1Fin×y:f0I|f-1FinBaseR
63 56 62 syl φxBaseRyBaseRzBaseSf0I|f-1Fin×y:f0I|f-1FinBaseR
64 3 adantr φxBaseRyBaseRzBaseSRRing
65 16 34 35 ringdir RRingrBaseRsBaseRtBaseRr+RsRt=rRt+RsRt
66 64 65 sylan φxBaseRyBaseRzBaseSrBaseRsBaseRtBaseRr+RsRt=rRt+RsRt
67 59 60 61 63 66 caofdir φxBaseRyBaseRzBaseSf0I|f-1Fin×x+Rff0I|f-1Fin×yRfz=f0I|f-1Fin×xRfz+Rff0I|f-1Fin×yRfz
68 59 53 56 ofc12 φxBaseRyBaseRzBaseSf0I|f-1Fin×x+Rff0I|f-1Fin×y=f0I|f-1Fin×x+Ry
69 68 oveq1d φxBaseRyBaseRzBaseSf0I|f-1Fin×x+Rff0I|f-1Fin×yRfz=f0I|f-1Fin×x+RyRfz
70 58 67 69 3eqtr2rd φxBaseRyBaseRzBaseSf0I|f-1Fin×x+RyRfz=xSz+RfySz
71 16 34 ringacl RRingxBaseRyBaseRx+RyBaseR
72 64 53 56 71 syl3anc φxBaseRyBaseRzBaseSx+RyBaseR
73 1 15 16 17 35 28 72 54 psrvsca φxBaseRyBaseRzBaseSx+RySz=f0I|f-1Fin×x+RyRfz
74 1 15 16 17 64 53 54 psrvscacl φxBaseRyBaseRzBaseSxSzBaseS
75 1 15 16 17 64 56 54 psrvscacl φxBaseRyBaseRzBaseSySzBaseS
76 1 17 34 39 74 75 psradd φxBaseRyBaseRzBaseSxSz+SySz=xSz+RfySz
77 70 73 76 3eqtr4d φxBaseRyBaseRzBaseSx+RySz=xSz+SySz
78 57 oveq2d φxBaseRyBaseRzBaseSf0I|f-1Fin×xRfySz=f0I|f-1Fin×xRff0I|f-1Fin×yRfz
79 16 35 ringass RRingrBaseRsBaseRtBaseRrRsRt=rRsRt
80 64 79 sylan φxBaseRyBaseRzBaseSrBaseRsBaseRtBaseRrRsRt=rRsRt
81 59 61 63 60 80 caofass φxBaseRyBaseRzBaseSf0I|f-1Fin×xRff0I|f-1Fin×yRfz=f0I|f-1Fin×xRff0I|f-1Fin×yRfz
82 59 53 56 ofc12 φxBaseRyBaseRzBaseSf0I|f-1Fin×xRff0I|f-1Fin×y=f0I|f-1Fin×xRy
83 82 oveq1d φxBaseRyBaseRzBaseSf0I|f-1Fin×xRff0I|f-1Fin×yRfz=f0I|f-1Fin×xRyRfz
84 78 81 83 3eqtr2rd φxBaseRyBaseRzBaseSf0I|f-1Fin×xRyRfz=f0I|f-1Fin×xRfySz
85 16 35 ringcl RRingxBaseRyBaseRxRyBaseR
86 64 53 56 85 syl3anc φxBaseRyBaseRzBaseSxRyBaseR
87 1 15 16 17 35 28 86 54 psrvsca φxBaseRyBaseRzBaseSxRySz=f0I|f-1Fin×xRyRfz
88 1 15 16 17 35 28 53 75 psrvsca φxBaseRyBaseRzBaseSxSySz=f0I|f-1Fin×xRfySz
89 84 87 88 3eqtr4d φxBaseRyBaseRzBaseSxRySz=xSySz
90 3 adantr φxBaseSRRing
91 eqid 1R=1R
92 16 91 ringidcl RRing1RBaseR
93 90 92 syl φxBaseS1RBaseR
94 simpr φxBaseSxBaseS
95 1 15 16 17 35 28 93 94 psrvsca φxBaseS1RSx=f0I|f-1Fin×1RRfx
96 23 a1i φxBaseSf0I|f-1FinV
97 1 16 28 17 94 psrelbas φxBaseSx:f0I|f-1FinBaseR
98 16 35 91 ringlidm RRingrBaseR1RRr=r
99 90 98 sylan φxBaseSrBaseR1RRr=r
100 96 97 93 99 caofid0l φxBaseSf0I|f-1Fin×1RRfx=x
101 95 100 eqtrd φxBaseS1RSx=x
102 4 5 6 7 8 9 10 11 3 14 21 52 77 89 101 islmodd φSLMod