Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
psrlmod
Next ⟩
psr1cl
Metamath Proof Explorer
Ascii
Unicode
Theorem
psrlmod
Description:
The ring of power series is a left module.
(Contributed by
Mario Carneiro
, 29-Dec-2014)
Ref
Expression
Hypotheses
psrring.s
⊢
S
=
I
mPwSer
R
psrring.i
⊢
φ
→
I
∈
V
psrring.r
⊢
φ
→
R
∈
Ring
Assertion
psrlmod
⊢
φ
→
S
∈
LMod
Proof
Step
Hyp
Ref
Expression
1
psrring.s
⊢
S
=
I
mPwSer
R
2
psrring.i
⊢
φ
→
I
∈
V
3
psrring.r
⊢
φ
→
R
∈
Ring
4
eqidd
⊢
φ
→
Base
S
=
Base
S
5
eqidd
⊢
φ
→
+
S
=
+
S
6
1
2
3
psrsca
⊢
φ
→
R
=
Scalar
S
7
eqidd
⊢
φ
→
⋅
S
=
⋅
S
8
eqidd
⊢
φ
→
Base
R
=
Base
R
9
eqidd
⊢
φ
→
+
R
=
+
R
10
eqidd
⊢
φ
→
⋅
R
=
⋅
R
11
eqidd
⊢
φ
→
1
R
=
1
R
12
ringgrp
⊢
R
∈
Ring
→
R
∈
Grp
13
3
12
syl
⊢
φ
→
R
∈
Grp
14
1
2
13
psrgrp
⊢
φ
→
S
∈
Grp
15
eqid
⊢
⋅
S
=
⋅
S
16
eqid
⊢
Base
R
=
Base
R
17
eqid
⊢
Base
S
=
Base
S
18
3
3ad2ant1
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
→
R
∈
Ring
19
simp2
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
→
x
∈
Base
R
20
simp3
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
→
y
∈
Base
S
21
1
15
16
17
18
19
20
psrvscacl
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
→
x
⋅
S
y
∈
Base
S
22
ovex
⊢
ℕ
0
I
∈
V
23
22
rabex
⊢
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
∈
V
24
23
a1i
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
∈
V
25
simpr1
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
x
∈
Base
R
26
fconst6g
⊢
x
∈
Base
R
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
:
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
⟶
Base
R
27
25
26
syl
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
:
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
⟶
Base
R
28
eqid
⊢
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
29
simpr2
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
y
∈
Base
S
30
1
16
28
17
29
psrelbas
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
y
:
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
⟶
Base
R
31
simpr3
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
z
∈
Base
S
32
1
16
28
17
31
psrelbas
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
z
:
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
⟶
Base
R
33
3
adantr
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
R
∈
Ring
34
eqid
⊢
+
R
=
+
R
35
eqid
⊢
⋅
R
=
⋅
R
36
16
34
35
ringdi
⊢
R
∈
Ring
∧
r
∈
Base
R
∧
s
∈
Base
R
∧
t
∈
Base
R
→
r
⋅
R
s
+
R
t
=
r
⋅
R
s
+
R
r
⋅
R
t
37
33
36
sylan
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
∧
r
∈
Base
R
∧
s
∈
Base
R
∧
t
∈
Base
R
→
r
⋅
R
s
+
R
t
=
r
⋅
R
s
+
R
r
⋅
R
t
38
24
27
30
32
37
caofdi
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
y
+
R
f
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
y
+
R
f
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
z
39
eqid
⊢
+
S
=
+
S
40
1
17
34
39
29
31
psradd
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
y
+
S
z
=
y
+
R
f
z
41
40
oveq2d
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
y
+
S
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
y
+
R
f
z
42
1
15
16
17
35
28
25
29
psrvsca
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
x
⋅
S
y
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
y
43
1
15
16
17
35
28
25
31
psrvsca
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
x
⋅
S
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
z
44
42
43
oveq12d
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
x
⋅
S
y
+
R
f
x
⋅
S
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
y
+
R
f
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
z
45
38
41
44
3eqtr4d
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
y
+
S
z
=
x
⋅
S
y
+
R
f
x
⋅
S
z
46
13
adantr
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
R
∈
Grp
47
1
17
39
46
29
31
psraddcl
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
y
+
S
z
∈
Base
S
48
1
15
16
17
35
28
25
47
psrvsca
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
x
⋅
S
y
+
S
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
y
+
S
z
49
21
3adant3r3
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
x
⋅
S
y
∈
Base
S
50
1
15
16
17
33
25
31
psrvscacl
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
x
⋅
S
z
∈
Base
S
51
1
17
34
39
49
50
psradd
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
x
⋅
S
y
+
S
x
⋅
S
z
=
x
⋅
S
y
+
R
f
x
⋅
S
z
52
45
48
51
3eqtr4d
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
S
∧
z
∈
Base
S
→
x
⋅
S
y
+
S
z
=
x
⋅
S
y
+
S
x
⋅
S
z
53
simpr1
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
x
∈
Base
R
54
simpr3
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
z
∈
Base
S
55
1
15
16
17
35
28
53
54
psrvsca
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
x
⋅
S
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
z
56
simpr2
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
y
∈
Base
R
57
1
15
16
17
35
28
56
54
psrvsca
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
y
⋅
S
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
y
⋅
R
f
z
58
55
57
oveq12d
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
x
⋅
S
z
+
R
f
y
⋅
S
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
z
+
R
f
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
y
⋅
R
f
z
59
23
a1i
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
∈
V
60
1
16
28
17
54
psrelbas
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
z
:
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
⟶
Base
R
61
53
26
syl
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
:
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
⟶
Base
R
62
fconst6g
⊢
y
∈
Base
R
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
y
:
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
⟶
Base
R
63
56
62
syl
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
y
:
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
⟶
Base
R
64
3
adantr
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
R
∈
Ring
65
16
34
35
ringdir
⊢
R
∈
Ring
∧
r
∈
Base
R
∧
s
∈
Base
R
∧
t
∈
Base
R
→
r
+
R
s
⋅
R
t
=
r
⋅
R
t
+
R
s
⋅
R
t
66
64
65
sylan
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
∧
r
∈
Base
R
∧
s
∈
Base
R
∧
t
∈
Base
R
→
r
+
R
s
⋅
R
t
=
r
⋅
R
t
+
R
s
⋅
R
t
67
59
60
61
63
66
caofdir
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
+
R
f
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
y
⋅
R
f
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
z
+
R
f
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
y
⋅
R
f
z
68
59
53
56
ofc12
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
+
R
f
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
y
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
+
R
y
69
68
oveq1d
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
+
R
f
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
y
⋅
R
f
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
+
R
y
⋅
R
f
z
70
58
67
69
3eqtr2rd
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
+
R
y
⋅
R
f
z
=
x
⋅
S
z
+
R
f
y
⋅
S
z
71
16
34
ringacl
⊢
R
∈
Ring
∧
x
∈
Base
R
∧
y
∈
Base
R
→
x
+
R
y
∈
Base
R
72
64
53
56
71
syl3anc
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
x
+
R
y
∈
Base
R
73
1
15
16
17
35
28
72
54
psrvsca
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
x
+
R
y
⋅
S
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
+
R
y
⋅
R
f
z
74
1
15
16
17
64
53
54
psrvscacl
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
x
⋅
S
z
∈
Base
S
75
1
15
16
17
64
56
54
psrvscacl
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
y
⋅
S
z
∈
Base
S
76
1
17
34
39
74
75
psradd
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
x
⋅
S
z
+
S
y
⋅
S
z
=
x
⋅
S
z
+
R
f
y
⋅
S
z
77
70
73
76
3eqtr4d
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
x
+
R
y
⋅
S
z
=
x
⋅
S
z
+
S
y
⋅
S
z
78
57
oveq2d
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
y
⋅
S
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
y
⋅
R
f
z
79
16
35
ringass
⊢
R
∈
Ring
∧
r
∈
Base
R
∧
s
∈
Base
R
∧
t
∈
Base
R
→
r
⋅
R
s
⋅
R
t
=
r
⋅
R
s
⋅
R
t
80
64
79
sylan
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
∧
r
∈
Base
R
∧
s
∈
Base
R
∧
t
∈
Base
R
→
r
⋅
R
s
⋅
R
t
=
r
⋅
R
s
⋅
R
t
81
59
61
63
60
80
caofass
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
y
⋅
R
f
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
y
⋅
R
f
z
82
59
53
56
ofc12
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
y
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
y
83
82
oveq1d
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
y
⋅
R
f
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
y
⋅
R
f
z
84
78
81
83
3eqtr2rd
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
y
⋅
R
f
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
y
⋅
S
z
85
16
35
ringcl
⊢
R
∈
Ring
∧
x
∈
Base
R
∧
y
∈
Base
R
→
x
⋅
R
y
∈
Base
R
86
64
53
56
85
syl3anc
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
x
⋅
R
y
∈
Base
R
87
1
15
16
17
35
28
86
54
psrvsca
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
x
⋅
R
y
⋅
S
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
y
⋅
R
f
z
88
1
15
16
17
35
28
53
75
psrvsca
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
x
⋅
S
y
⋅
S
z
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
x
⋅
R
f
y
⋅
S
z
89
84
87
88
3eqtr4d
⊢
φ
∧
x
∈
Base
R
∧
y
∈
Base
R
∧
z
∈
Base
S
→
x
⋅
R
y
⋅
S
z
=
x
⋅
S
y
⋅
S
z
90
3
adantr
⊢
φ
∧
x
∈
Base
S
→
R
∈
Ring
91
eqid
⊢
1
R
=
1
R
92
16
91
ringidcl
⊢
R
∈
Ring
→
1
R
∈
Base
R
93
90
92
syl
⊢
φ
∧
x
∈
Base
S
→
1
R
∈
Base
R
94
simpr
⊢
φ
∧
x
∈
Base
S
→
x
∈
Base
S
95
1
15
16
17
35
28
93
94
psrvsca
⊢
φ
∧
x
∈
Base
S
→
1
R
⋅
S
x
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
1
R
⋅
R
f
x
96
23
a1i
⊢
φ
∧
x
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
∈
V
97
1
16
28
17
94
psrelbas
⊢
φ
∧
x
∈
Base
S
→
x
:
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
⟶
Base
R
98
16
35
91
ringlidm
⊢
R
∈
Ring
∧
r
∈
Base
R
→
1
R
⋅
R
r
=
r
99
90
98
sylan
⊢
φ
∧
x
∈
Base
S
∧
r
∈
Base
R
→
1
R
⋅
R
r
=
r
100
96
97
93
99
caofid0l
⊢
φ
∧
x
∈
Base
S
→
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
×
1
R
⋅
R
f
x
=
x
101
95
100
eqtrd
⊢
φ
∧
x
∈
Base
S
→
1
R
⋅
S
x
=
x
102
4
5
6
7
8
9
10
11
3
14
21
52
77
89
101
islmodd
⊢
φ
→
S
∈
LMod