Metamath Proof Explorer


Theorem pt1hmeo

Description: The canonical homeomorphism from a topological product on a singleton to the topology of the factor. (Contributed by Mario Carneiro, 3-Feb-2015) (Proof shortened by AV, 18-Apr-2021)

Ref Expression
Hypotheses pt1hmeo.j K=𝑡AJ
pt1hmeo.a φAV
pt1hmeo.r φJTopOnX
Assertion pt1hmeo φxXAxJHomeoK

Proof

Step Hyp Ref Expression
1 pt1hmeo.j K=𝑡AJ
2 pt1hmeo.a φAV
3 pt1hmeo.r φJTopOnX
4 fconstmpt A×x=kAx
5 2 adantr φxXAV
6 sneq k=Ak=A
7 6 xpeq1d k=Ak×x=A×x
8 opeq1 k=Akx=Ax
9 8 sneqd k=Akx=Ax
10 7 9 eqeq12d k=Ak×x=kxA×x=Ax
11 vex kV
12 vex xV
13 11 12 xpsn k×x=kx
14 10 13 vtoclg AVA×x=Ax
15 5 14 syl φxXA×x=Ax
16 4 15 eqtr3id φxXkAx=Ax
17 16 mpteq2dva φxXkAx=xXAx
18 snex AV
19 18 a1i φAV
20 topontop JTopOnXJTop
21 3 20 syl φJTop
22 2 21 fsnd φAJ:ATop
23 3 cnmptid φxXxJCnJ
24 23 adantr φkAxXxJCnJ
25 elsni kAk=A
26 25 fveq2d kAAJk=AJA
27 fvsng AVJTopOnXAJA=J
28 2 3 27 syl2anc φAJA=J
29 26 28 sylan9eqr φkAAJk=J
30 29 oveq2d φkAJCnAJk=JCnJ
31 24 30 eleqtrrd φkAxXxJCnAJk
32 1 3 19 22 31 ptcn φxXkAxJCnK
33 17 32 eqeltrrd φxXAxJCnK
34 simprr φxXy=Axy=Ax
35 16 adantrr φxXy=AxkAx=Ax
36 34 35 eqtr4d φxXy=Axy=kAx
37 simprl φxXy=AxxX
38 37 adantr φxXy=AxkAxX
39 38 fmpttd φxXy=AxkAx:AX
40 toponmax JTopOnXXJ
41 3 40 syl φXJ
42 41 adantr φxXy=AxXJ
43 elmapg XJAVkAxXAkAx:AX
44 42 18 43 sylancl φxXy=AxkAxXAkAx:AX
45 39 44 mpbird φxXy=AxkAxXA
46 36 45 eqeltrd φxXy=AxyXA
47 34 fveq1d φxXy=AxyA=AxA
48 2 adantr φxXy=AxAV
49 fvsng AVxXAxA=x
50 48 37 49 syl2anc φxXy=AxAxA=x
51 47 50 eqtr2d φxXy=Axx=yA
52 46 51 jca φxXy=AxyXAx=yA
53 simprr φyXAx=yAx=yA
54 simprl φyXAx=yAyXA
55 41 adantr φyXAx=yAXJ
56 elmapg XJAVyXAy:AX
57 55 18 56 sylancl φyXAx=yAyXAy:AX
58 54 57 mpbid φyXAx=yAy:AX
59 snidg AVAA
60 2 59 syl φAA
61 60 adantr φyXAx=yAAA
62 58 61 ffvelcdmd φyXAx=yAyAX
63 53 62 eqeltrd φyXAx=yAxX
64 2 adantr φyXAx=yAAV
65 fsn2g AVy:AXyAXy=AyA
66 64 65 syl φyXAx=yAy:AXyAXy=AyA
67 58 66 mpbid φyXAx=yAyAXy=AyA
68 67 simprd φyXAx=yAy=AyA
69 53 opeq2d φyXAx=yAAx=AyA
70 69 sneqd φyXAx=yAAx=AyA
71 68 70 eqtr4d φyXAx=yAy=Ax
72 63 71 jca φyXAx=yAxXy=Ax
73 52 72 impbida φxXy=AxyXAx=yA
74 73 mptcnv φxXAx-1=yXAyA
75 xpsng AVJTopOnXA×J=AJ
76 2 3 75 syl2anc φA×J=AJ
77 76 eqcomd φAJ=A×J
78 77 fveq2d φ𝑡AJ=𝑡A×J
79 1 78 eqtrid φK=𝑡A×J
80 eqid 𝑡A×J=𝑡A×J
81 80 pttoponconst AVJTopOnX𝑡A×JTopOnXA
82 19 3 81 syl2anc φ𝑡A×JTopOnXA
83 79 82 eqeltrd φKTopOnXA
84 toponuni KTopOnXAXA=K
85 83 84 syl φXA=K
86 85 mpteq1d φyXAyA=yKyA
87 74 86 eqtrd φxXAx-1=yKyA
88 eqid K=K
89 88 1 ptpjcn AVAJ:ATopAAyKyAKCnAJA
90 18 22 60 89 mp3an2i φyKyAKCnAJA
91 28 oveq2d φKCnAJA=KCnJ
92 90 91 eleqtrd φyKyAKCnJ
93 87 92 eqeltrd φxXAx-1KCnJ
94 ishmeo xXAxJHomeoKxXAxJCnKxXAx-1KCnJ
95 33 93 94 sylanbrc φxXAxJHomeoK