Metamath Proof Explorer


Theorem pzriprnglem5

Description: Lemma 5 for pzriprng : I is a subring of the non-unital ring R . (Contributed by AV, 18-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R=ring×𝑠ring
pzriprng.i I=×0
Assertion pzriprnglem5 Could not format assertion : No typesetting found for |- I e. ( SubRng ` R ) with typecode |-

Proof

Step Hyp Ref Expression
1 pzriprng.r R=ring×𝑠ring
2 pzriprng.i I=×0
3 1 2 pzriprnglem4 ISubGrpR
4 1 2 pzriprnglem3 xIax=a0
5 1 2 pzriprnglem3 yIby=b0
6 zringbas =Basering
7 zringring ringRing
8 7 a1i abringRing
9 simpl aba
10 0zd ab0
11 simpr abb
12 zringmulr ×=ring
13 12 eqcomi ring=×
14 13 oveqi aringb=ab
15 zmulcl abab
16 14 15 eqeltrid abaringb
17 13 oveqi 0ring0=00
18 0cn 0
19 18 mul02i 00=0
20 17 19 eqtri 0ring0=0
21 0z 0
22 20 21 eqeltri 0ring0
23 22 a1i ab0ring0
24 eqid ring=ring
25 eqid R=R
26 1 6 6 8 8 9 10 11 10 16 23 24 24 25 xpsmul aba0Rb0=aringb0ring0
27 c0ex 0V
28 27 snid 00
29 28 a1i ab00
30 20 29 eqeltrid ab0ring00
31 16 30 opelxpd abaringb0ring0×0
32 26 31 eqeltrd aba0Rb0×0
33 32 adantr aby=b0x=a0a0Rb0×0
34 oveq12 x=a0y=b0xRy=a0Rb0
35 34 ancoms y=b0x=a0xRy=a0Rb0
36 35 adantl aby=b0x=a0xRy=a0Rb0
37 2 a1i aby=b0x=a0I=×0
38 33 36 37 3eltr4d aby=b0x=a0xRyI
39 38 exp32 aby=b0x=a0xRyI
40 39 rexlimdva aby=b0x=a0xRyI
41 40 com23 ax=a0by=b0xRyI
42 41 rexlimiv ax=a0by=b0xRyI
43 42 imp ax=a0by=b0xRyI
44 4 5 43 syl2anb xIyIxRyI
45 44 rgen2 xIyIxRyI
46 1 pzriprnglem1 RRng
47 eqid BaseR=BaseR
48 47 25 issubrng2 Could not format ( R e. Rng -> ( I e. ( SubRng ` R ) <-> ( I e. ( SubGrp ` R ) /\ A. x e. I A. y e. I ( x ( .r ` R ) y ) e. I ) ) ) : No typesetting found for |- ( R e. Rng -> ( I e. ( SubRng ` R ) <-> ( I e. ( SubGrp ` R ) /\ A. x e. I A. y e. I ( x ( .r ` R ) y ) e. I ) ) ) with typecode |-
49 46 48 ax-mp Could not format ( I e. ( SubRng ` R ) <-> ( I e. ( SubGrp ` R ) /\ A. x e. I A. y e. I ( x ( .r ` R ) y ) e. I ) ) : No typesetting found for |- ( I e. ( SubRng ` R ) <-> ( I e. ( SubGrp ` R ) /\ A. x e. I A. y e. I ( x ( .r ` R ) y ) e. I ) ) with typecode |-
50 3 45 49 mpbir2an Could not format I e. ( SubRng ` R ) : No typesetting found for |- I e. ( SubRng ` R ) with typecode |-