Metamath Proof Explorer


Theorem qsdrng

Description: An ideal M is both left and right maximal if and only if the factor ring Q is a division ring. (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypotheses qsdrng.0 O=opprR
qsdrng.q Q=R/𝑠R~QGM
qsdrng.r φRNzRing
qsdrng.2 φM2IdealR
Assertion qsdrng Could not format assertion : No typesetting found for |- ( ph -> ( Q e. DivRing <-> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 qsdrng.0 O=opprR
2 qsdrng.q Q=R/𝑠R~QGM
3 qsdrng.r φRNzRing
4 qsdrng.2 φM2IdealR
5 nzrring RNzRingRRing
6 3 5 syl φRRing
7 6 adantr φQDivRingRRing
8 4 2idllidld φMLIdealR
9 8 adantr φQDivRingMLIdealR
10 drngnzr QDivRingQNzRing
11 10 ad2antlr φQDivRingM=BaseRQNzRing
12 eqid 2IdealR=2IdealR
13 2 12 qusring RRingM2IdealRQRing
14 6 4 13 syl2anc φQRing
15 14 adantr φM=BaseRQRing
16 oveq2 M=BaseRR~QGM=R~QGBaseR
17 16 oveq2d M=BaseRR/𝑠R~QGM=R/𝑠R~QGBaseR
18 2 17 eqtrid M=BaseRQ=R/𝑠R~QGBaseR
19 18 fveq2d M=BaseRBaseQ=BaseR/𝑠R~QGBaseR
20 6 ringgrpd φRGrp
21 eqid BaseR=BaseR
22 eqid R/𝑠R~QGBaseR=R/𝑠R~QGBaseR
23 21 22 qustriv RGrpBaseR/𝑠R~QGBaseR=BaseR
24 20 23 syl φBaseR/𝑠R~QGBaseR=BaseR
25 19 24 sylan9eqr φM=BaseRBaseQ=BaseR
26 25 fveq2d φM=BaseRBaseQ=BaseR
27 fvex BaseRV
28 hashsng BaseRVBaseR=1
29 27 28 ax-mp BaseR=1
30 26 29 eqtrdi φM=BaseRBaseQ=1
31 0ringnnzr QRingBaseQ=1¬QNzRing
32 31 biimpa QRingBaseQ=1¬QNzRing
33 15 30 32 syl2anc φM=BaseR¬QNzRing
34 33 adantlr φQDivRingM=BaseR¬QNzRing
35 11 34 pm2.65da φQDivRing¬M=BaseR
36 35 neqned φQDivRingMBaseR
37 simplr φQDivRingjLIdealRMj¬j=MMj
38 simpr φQDivRingjLIdealRMj¬j=M¬j=M
39 38 neqned φQDivRingjLIdealRMj¬j=MjM
40 39 necomd φQDivRingjLIdealRMj¬j=MMj
41 pssdifn0 MjMjjM
42 37 40 41 syl2anc φQDivRingjLIdealRMj¬j=MjM
43 n0 jMxxjM
44 42 43 sylib φQDivRingjLIdealRMj¬j=MxxjM
45 3 ad5antr φQDivRingjLIdealRMj¬j=MxjMRNzRing
46 4 ad5antr φQDivRingjLIdealRMj¬j=MxjMM2IdealR
47 simp-5r φQDivRingjLIdealRMj¬j=MxjMQDivRing
48 simp-4r φQDivRingjLIdealRMj¬j=MxjMjLIdealR
49 37 adantr φQDivRingjLIdealRMj¬j=MxjMMj
50 simpr φQDivRingjLIdealRMj¬j=MxjMxjM
51 1 2 45 46 21 47 48 49 50 qsdrnglem2 φQDivRingjLIdealRMj¬j=MxjMj=BaseR
52 44 51 exlimddv φQDivRingjLIdealRMj¬j=Mj=BaseR
53 52 ex φQDivRingjLIdealRMj¬j=Mj=BaseR
54 53 orrd φQDivRingjLIdealRMjj=Mj=BaseR
55 54 ex φQDivRingjLIdealRMjj=Mj=BaseR
56 55 ralrimiva φQDivRingjLIdealRMjj=Mj=BaseR
57 21 ismxidl Could not format ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) ) : No typesetting found for |- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) ) with typecode |-
58 57 biimpar Could not format ( ( R e. Ring /\ ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) -> M e. ( MaxIdeal ` R ) ) with typecode |-
59 7 9 36 56 58 syl13anc Could not format ( ( ph /\ Q e. DivRing ) -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( ph /\ Q e. DivRing ) -> M e. ( MaxIdeal ` R ) ) with typecode |-
60 1 opprring RRingORing
61 6 60 syl φORing
62 61 adantr φQDivRingORing
63 4 adantr φQDivRingM2IdealR
64 63 1 2idlridld φQDivRingMLIdealO
65 simplr φQDivRingjLIdealOMj¬j=MMj
66 simpr φQDivRingjLIdealOMj¬j=M¬j=M
67 66 neqned φQDivRingjLIdealOMj¬j=MjM
68 67 necomd φQDivRingjLIdealOMj¬j=MMj
69 65 68 41 syl2anc φQDivRingjLIdealOMj¬j=MjM
70 69 43 sylib φQDivRingjLIdealOMj¬j=MxxjM
71 eqid opprO=opprO
72 eqid O/𝑠O~QGM=O/𝑠O~QGM
73 1 opprnzr RNzRingONzRing
74 3 73 syl φONzRing
75 74 ad5antr φQDivRingjLIdealOMj¬j=MxjMONzRing
76 1 6 oppr2idl φ2IdealR=2IdealO
77 4 76 eleqtrd φM2IdealO
78 77 ad5antr φQDivRingjLIdealOMj¬j=MxjMM2IdealO
79 1 21 opprbas BaseR=BaseO
80 eqid opprQ=opprQ
81 80 opprdrng QDivRingopprQDivRing
82 21 1 2 6 4 opprqusdrng φopprQDivRingO/𝑠O~QGMDivRing
83 82 biimpa φopprQDivRingO/𝑠O~QGMDivRing
84 81 83 sylan2b φQDivRingO/𝑠O~QGMDivRing
85 84 ad4antr φQDivRingjLIdealOMj¬j=MxjMO/𝑠O~QGMDivRing
86 simp-4r φQDivRingjLIdealOMj¬j=MxjMjLIdealO
87 65 adantr φQDivRingjLIdealOMj¬j=MxjMMj
88 simpr φQDivRingjLIdealOMj¬j=MxjMxjM
89 71 72 75 78 79 85 86 87 88 qsdrnglem2 φQDivRingjLIdealOMj¬j=MxjMj=BaseR
90 70 89 exlimddv φQDivRingjLIdealOMj¬j=Mj=BaseR
91 90 ex φQDivRingjLIdealOMj¬j=Mj=BaseR
92 91 orrd φQDivRingjLIdealOMjj=Mj=BaseR
93 92 ex φQDivRingjLIdealOMjj=Mj=BaseR
94 93 ralrimiva φQDivRingjLIdealOMjj=Mj=BaseR
95 79 ismxidl Could not format ( O e. Ring -> ( M e. ( MaxIdeal ` O ) <-> ( M e. ( LIdeal ` O ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) ) : No typesetting found for |- ( O e. Ring -> ( M e. ( MaxIdeal ` O ) <-> ( M e. ( LIdeal ` O ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) ) with typecode |-
96 95 biimpar Could not format ( ( O e. Ring /\ ( M e. ( LIdeal ` O ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) -> M e. ( MaxIdeal ` O ) ) : No typesetting found for |- ( ( O e. Ring /\ ( M e. ( LIdeal ` O ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) -> M e. ( MaxIdeal ` O ) ) with typecode |-
97 62 64 36 94 96 syl13anc Could not format ( ( ph /\ Q e. DivRing ) -> M e. ( MaxIdeal ` O ) ) : No typesetting found for |- ( ( ph /\ Q e. DivRing ) -> M e. ( MaxIdeal ` O ) ) with typecode |-
98 59 97 jca Could not format ( ( ph /\ Q e. DivRing ) -> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) : No typesetting found for |- ( ( ph /\ Q e. DivRing ) -> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) with typecode |-
99 3 adantr Could not format ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> R e. NzRing ) : No typesetting found for |- ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> R e. NzRing ) with typecode |-
100 simprl Could not format ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> M e. ( MaxIdeal ` R ) ) with typecode |-
101 simprr Could not format ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> M e. ( MaxIdeal ` O ) ) : No typesetting found for |- ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> M e. ( MaxIdeal ` O ) ) with typecode |-
102 1 2 99 100 101 qsdrngi Could not format ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> Q e. DivRing ) : No typesetting found for |- ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> Q e. DivRing ) with typecode |-
103 98 102 impbida Could not format ( ph -> ( Q e. DivRing <-> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) ) : No typesetting found for |- ( ph -> ( Q e. DivRing <-> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) ) with typecode |-