Metamath Proof Explorer


Theorem r1peuqusdeg1

Description: Uniqueness of polynomial remainder in terms of a quotient structure in the sense of the right hand side of r1pid2 . (Contributed by SN, 21-Jun-2025)

Ref Expression
Hypotheses r1peuqus.p P = Poly 1 R
r1peuqus.i I = RSpan P F
r1peuqus.t T = P / 𝑠 P ~ QG I
r1peuqus.q Q = Base T
r1peuqus.n N = Unic 1p R
r1peuqus.d D = deg 1 R
r1peuqus.r φ R Domn
r1peuqus.f φ F N
r1peuqus.z φ Z Q
Assertion r1peuqusdeg1 φ ∃! q Z D q < D F

Proof

Step Hyp Ref Expression
1 r1peuqus.p P = Poly 1 R
2 r1peuqus.i I = RSpan P F
3 r1peuqus.t T = P / 𝑠 P ~ QG I
4 r1peuqus.q Q = Base T
5 r1peuqus.n N = Unic 1p R
6 r1peuqus.d D = deg 1 R
7 r1peuqus.r φ R Domn
8 r1peuqus.f φ F N
9 r1peuqus.z φ Z Q
10 eqid Base P = Base P
11 eqid + P = + P
12 eqid P = P
13 eqid P ~ QG I = P ~ QG I
14 1 ply1domn R Domn P Domn
15 7 14 syl φ P Domn
16 domnring P Domn P Ring
17 15 16 syl φ P Ring
18 1 10 5 uc1pcl F N F Base P
19 8 18 syl φ F Base P
20 9 4 eleqtrdi φ Z Base T
21 10 11 12 13 3 2 17 19 20 ellcsrspsn φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F
22 domnring R Domn R Ring
23 7 22 syl φ R Ring
24 23 adantr φ p Base P R Ring
25 simpr φ p Base P p Base P
26 8 adantr φ p Base P F N
27 1 6 10 11 12 5 24 25 26 ply1divalg3 φ p Base P ∃! s Base P D p + P s P F < D F
28 27 adantr φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F ∃! s Base P D p + P s P F < D F
29 ovexd φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F s Base P p + P s P F V
30 simpr φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F s Base P s Base P
31 eqidd φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F s Base P p + P s P F = p + P s P F
32 oveq1 y = s y P F = s P F
33 32 oveq2d y = s p + P y P F = p + P s P F
34 33 eqeq2d y = s p + P s P F = p + P y P F p + P s P F = p + P s P F
35 34 rspcev s Base P p + P s P F = p + P s P F y Base P p + P s P F = p + P y P F
36 30 31 35 syl2anc φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F s Base P y Base P p + P s P F = p + P y P F
37 eqeq1 z = p + P s P F z = p + P y P F p + P s P F = p + P y P F
38 37 rexbidv z = p + P s P F y Base P z = p + P y P F y Base P p + P s P F = p + P y P F
39 29 36 38 elabd φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F s Base P p + P s P F z | y Base P z = p + P y P F
40 simplrr φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F s Base P Z = z | y Base P z = p + P y P F
41 39 40 eleqtrrd φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F s Base P p + P s P F Z
42 simprr φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F Z = z | y Base P z = p + P y P F
43 42 eqimssd φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F Z z | y Base P z = p + P y P F
44 43 sselda φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F q Z q z | y Base P z = p + P y P F
45 eqeq1 z = q z = p + P y P F q = p + P y P F
46 45 rexbidv z = q y Base P z = p + P y P F y Base P q = p + P y P F
47 33 eqeq2d y = s q = p + P y P F q = p + P s P F
48 47 cbvrexvw y Base P q = p + P y P F s Base P q = p + P s P F
49 46 48 bitrdi z = q y Base P z = p + P y P F s Base P q = p + P s P F
50 49 elabg q z | y Base P z = p + P y P F q z | y Base P z = p + P y P F s Base P q = p + P s P F
51 50 ibi q z | y Base P z = p + P y P F s Base P q = p + P s P F
52 44 51 syl φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F q Z s Base P q = p + P s P F
53 eqtr2 q = p + P s P F q = p + P t P F p + P s P F = p + P t P F
54 17 ringgrpd φ P Grp
55 54 adantr φ p Base P s Base P t Base P P Grp
56 17 adantr φ p Base P s Base P t Base P P Ring
57 simpr2 φ p Base P s Base P t Base P s Base P
58 19 adantr φ p Base P s Base P t Base P F Base P
59 10 12 56 57 58 ringcld φ p Base P s Base P t Base P s P F Base P
60 simpr3 φ p Base P s Base P t Base P t Base P
61 10 12 56 60 58 ringcld φ p Base P s Base P t Base P t P F Base P
62 simpr1 φ p Base P s Base P t Base P p Base P
63 10 11 grplcan P Grp s P F Base P t P F Base P p Base P p + P s P F = p + P t P F s P F = t P F
64 55 59 61 62 63 syl13anc φ p Base P s Base P t Base P p + P s P F = p + P t P F s P F = t P F
65 eqid 0 P = 0 P
66 simplr2 φ p Base P s Base P t Base P s P F = t P F s Base P
67 simplr3 φ p Base P s Base P t Base P s P F = t P F t Base P
68 1 65 5 uc1pn0 F N F 0 P
69 8 68 syl φ F 0 P
70 19 69 eldifsnd φ F Base P 0 P
71 70 ad2antrr φ p Base P s Base P t Base P s P F = t P F F Base P 0 P
72 15 ad2antrr φ p Base P s Base P t Base P s P F = t P F P Domn
73 simpr φ p Base P s Base P t Base P s P F = t P F s P F = t P F
74 10 65 12 66 67 71 72 73 domnrcan φ p Base P s Base P t Base P s P F = t P F s = t
75 74 ex φ p Base P s Base P t Base P s P F = t P F s = t
76 64 75 sylbid φ p Base P s Base P t Base P p + P s P F = p + P t P F s = t
77 76 3exp2 φ p Base P s Base P t Base P p + P s P F = p + P t P F s = t
78 77 imp43 φ p Base P s Base P t Base P p + P s P F = p + P t P F s = t
79 53 78 syl5 φ p Base P s Base P t Base P q = p + P s P F q = p + P t P F s = t
80 79 ralrimivva φ p Base P s Base P t Base P q = p + P s P F q = p + P t P F s = t
81 oveq1 s = t s P F = t P F
82 81 oveq2d s = t p + P s P F = p + P t P F
83 82 eqeq2d s = t q = p + P s P F q = p + P t P F
84 83 rmo4 * s Base P q = p + P s P F s Base P t Base P q = p + P s P F q = p + P t P F s = t
85 80 84 sylibr φ p Base P * s Base P q = p + P s P F
86 85 ad2antrr φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F q Z * s Base P q = p + P s P F
87 reu5 ∃! s Base P q = p + P s P F s Base P q = p + P s P F * s Base P q = p + P s P F
88 52 86 87 sylanbrc φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F q Z ∃! s Base P q = p + P s P F
89 fveq2 q = p + P s P F D q = D p + P s P F
90 89 breq1d q = p + P s P F D q < D F D p + P s P F < D F
91 41 88 90 reuxfr1ds φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F ∃! q Z D q < D F ∃! s Base P D p + P s P F < D F
92 28 91 mpbird φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F ∃! q Z D q < D F
93 92 ex φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F ∃! q Z D q < D F
94 93 reximdva φ p Base P Z = p P ~ QG I Z = z | y Base P z = p + P y P F p Base P ∃! q Z D q < D F
95 21 94 mpd φ p Base P ∃! q Z D q < D F
96 id ∃! q Z D q < D F ∃! q Z D q < D F
97 96 rexlimivw p Base P ∃! q Z D q < D F ∃! q Z D q < D F
98 95 97 syl φ ∃! q Z D q < D F