Step |
Hyp |
Ref |
Expression |
1 |
|
r1peuqus.p |
|
2 |
|
r1peuqus.i |
|
3 |
|
r1peuqus.t |
|
4 |
|
r1peuqus.q |
|
5 |
|
r1peuqus.n |
|
6 |
|
r1peuqus.d |
|
7 |
|
r1peuqus.r |
|
8 |
|
r1peuqus.f |
|
9 |
|
r1peuqus.z |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
1
|
ply1domn |
|
15 |
7 14
|
syl |
|
16 |
|
domnring |
|
17 |
15 16
|
syl |
|
18 |
1 10 5
|
uc1pcl |
|
19 |
8 18
|
syl |
|
20 |
9 4
|
eleqtrdi |
|
21 |
10 11 12 13 3 2 17 19 20
|
ellcsrspsn |
|
22 |
|
domnring |
|
23 |
7 22
|
syl |
|
24 |
23
|
adantr |
|
25 |
|
simpr |
|
26 |
8
|
adantr |
|
27 |
1 6 10 11 12 5 24 25 26
|
ply1divalg3 |
|
28 |
27
|
adantr |
|
29 |
|
ovexd |
|
30 |
|
simpr |
|
31 |
|
eqidd |
|
32 |
|
oveq1 |
|
33 |
32
|
oveq2d |
|
34 |
33
|
eqeq2d |
|
35 |
34
|
rspcev |
|
36 |
30 31 35
|
syl2anc |
|
37 |
|
eqeq1 |
|
38 |
37
|
rexbidv |
|
39 |
29 36 38
|
elabd |
|
40 |
|
simplrr |
|
41 |
39 40
|
eleqtrrd |
|
42 |
|
simprr |
|
43 |
42
|
eqimssd |
|
44 |
43
|
sselda |
|
45 |
|
eqeq1 |
|
46 |
45
|
rexbidv |
|
47 |
33
|
eqeq2d |
|
48 |
47
|
cbvrexvw |
|
49 |
46 48
|
bitrdi |
|
50 |
49
|
elabg |
|
51 |
50
|
ibi |
|
52 |
44 51
|
syl |
|
53 |
|
eqtr2 |
|
54 |
17
|
ringgrpd |
|
55 |
54
|
adantr |
|
56 |
17
|
adantr |
|
57 |
|
simpr2 |
|
58 |
19
|
adantr |
|
59 |
10 12 56 57 58
|
ringcld |
|
60 |
|
simpr3 |
|
61 |
10 12 56 60 58
|
ringcld |
|
62 |
|
simpr1 |
|
63 |
10 11
|
grplcan |
|
64 |
55 59 61 62 63
|
syl13anc |
|
65 |
|
eqid |
|
66 |
|
simplr2 |
|
67 |
|
simplr3 |
|
68 |
1 65 5
|
uc1pn0 |
|
69 |
8 68
|
syl |
|
70 |
19 69
|
eldifsnd |
|
71 |
70
|
ad2antrr |
|
72 |
15
|
ad2antrr |
|
73 |
|
simpr |
|
74 |
10 65 12 66 67 71 72 73
|
domnrcan |
|
75 |
74
|
ex |
|
76 |
64 75
|
sylbid |
|
77 |
76
|
3exp2 |
|
78 |
77
|
imp43 |
|
79 |
53 78
|
syl5 |
|
80 |
79
|
ralrimivva |
|
81 |
|
oveq1 |
|
82 |
81
|
oveq2d |
|
83 |
82
|
eqeq2d |
|
84 |
83
|
rmo4 |
|
85 |
80 84
|
sylibr |
|
86 |
85
|
ad2antrr |
|
87 |
|
reu5 |
|
88 |
52 86 87
|
sylanbrc |
|
89 |
|
fveq2 |
|
90 |
89
|
breq1d |
|
91 |
41 88 90
|
reuxfr1ds |
|
92 |
28 91
|
mpbird |
|
93 |
92
|
ex |
|
94 |
93
|
reximdva |
|
95 |
21 94
|
mpd |
|
96 |
|
id |
|
97 |
96
|
rexlimivw |
|
98 |
95 97
|
syl |
|