Metamath Proof Explorer


Theorem r1pid2

Description: Identity law for polynomial remainder operation: it leaves a polynomial A unchanged iff the degree of A is less than the degree of the divisor B . (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses r1padd1.p P=Poly1R
r1padd1.u U=BaseP
r1padd1.n N=Unic1pR
r1padd1.e E=rem1pR
r1pid2.r φRIDomn
r1pid2.d D=deg1R
r1pid2.p φAU
r1pid2.q φBN
Assertion r1pid2 φAEB=ADA<DB

Proof

Step Hyp Ref Expression
1 r1padd1.p P=Poly1R
2 r1padd1.u U=BaseP
3 r1padd1.n N=Unic1pR
4 r1padd1.e E=rem1pR
5 r1pid2.r φRIDomn
6 r1pid2.d D=deg1R
7 r1pid2.p φAU
8 r1pid2.q φBN
9 5 idomringd φRRing
10 eqid quot1pR=quot1pR
11 eqid P=P
12 eqid +P=+P
13 1 2 3 10 4 11 12 r1pid RRingAUBNA=Aquot1pRBPB+PAEB
14 9 7 8 13 syl3anc φA=Aquot1pRBPB+PAEB
15 14 eqeq2d φAEB=AAEB=Aquot1pRBPB+PAEB
16 eqcom Aquot1pRBPB+PAEB=AEBAEB=Aquot1pRBPB+PAEB
17 15 16 bitr4di φAEB=AAquot1pRBPB+PAEB=AEB
18 eqid 0P=0P
19 1 ply1ring RRingPRing
20 9 19 syl φPRing
21 20 ringgrpd φPGrp
22 4 1 2 3 r1pcl RRingAUBNAEBU
23 9 7 8 22 syl3anc φAEBU
24 2 12 18 21 23 grplidd φ0P+PAEB=AEB
25 24 eqeq2d φAquot1pRBPB+PAEB=0P+PAEBAquot1pRBPB+PAEB=AEB
26 10 1 2 3 q1pcl RRingAUBNAquot1pRBU
27 9 7 8 26 syl3anc φAquot1pRBU
28 1 2 3 uc1pcl BNBU
29 8 28 syl φBU
30 2 11 20 27 29 ringcld φAquot1pRBPBU
31 2 18 ring0cl PRing0PU
32 9 19 31 3syl φ0PU
33 2 12 grprcan PGrpAquot1pRBPBU0PUAEBUAquot1pRBPB+PAEB=0P+PAEBAquot1pRBPB=0P
34 21 30 32 23 33 syl13anc φAquot1pRBPB+PAEB=0P+PAEBAquot1pRBPB=0P
35 17 25 34 3bitr2d φAEB=AAquot1pRBPB=0P
36 isidom RIDomnRCRingRDomn
37 5 36 sylib φRCRingRDomn
38 37 simpld φRCRing
39 1 ply1crng RCRingPCRing
40 38 39 syl φPCRing
41 2 11 crngcom PCRingBUAquot1pRBUBPAquot1pRB=Aquot1pRBPB
42 40 29 27 41 syl3anc φBPAquot1pRB=Aquot1pRBPB
43 42 eqeq1d φBPAquot1pRB=0PAquot1pRBPB=0P
44 5 idomdomd φRDomn
45 1 ply1domn RDomnPDomn
46 44 45 syl φPDomn
47 1 18 3 uc1pn0 BNB0P
48 8 47 syl φB0P
49 eqid RLRegP=RLRegP
50 2 49 18 domnrrg PDomnBUB0PBRLRegP
51 46 29 48 50 syl3anc φBRLRegP
52 49 2 11 18 rrgeq0 PRingBRLRegPAquot1pRBUBPAquot1pRB=0PAquot1pRB=0P
53 20 51 27 52 syl3anc φBPAquot1pRB=0PAquot1pRB=0P
54 35 43 53 3bitr2d φAEB=AAquot1pRB=0P
55 2 11 18 20 29 ringlzd φ0PPB=0P
56 55 oveq2d φA-P0PPB=A-P0P
57 eqid -P=-P
58 2 18 57 grpsubid1 PGrpAUA-P0P=A
59 21 7 58 syl2anc φA-P0P=A
60 56 59 eqtr2d φA=A-P0PPB
61 60 fveq2d φDA=DA-P0PPB
62 61 breq1d φDA<DBDA-P0PPB<DB
63 32 biantrurd φDA-P0PPB<DB0PUDA-P0PPB<DB
64 10 1 2 6 57 11 3 q1peqb RRingAUBN0PUDA-P0PPB<DBAquot1pRB=0P
65 9 7 8 64 syl3anc φ0PUDA-P0PPB<DBAquot1pRB=0P
66 62 63 65 3bitrd φDA<DBAquot1pRB=0P
67 54 66 bitr4d φAEB=ADA<DB