Description: It is sufficient to check the Ramsey property on finite sets of size equal to the upper bound. (Contributed by Mario Carneiro, 23-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rami.c | |
|
rami.m | |
||
rami.r | |
||
rami.f | |
||
ramub2.n | |
||
ramub2.i | |
||
Assertion | ramub2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rami.c | |
|
2 | rami.m | |
|
3 | rami.r | |
|
4 | rami.f | |
|
5 | ramub2.n | |
|
6 | ramub2.i | |
|
7 | 5 | adantr | |
8 | hashfz1 | |
|
9 | 7 8 | syl | |
10 | simprl | |
|
11 | 9 10 | eqbrtrd | |
12 | fzfid | |
|
13 | vex | |
|
14 | hashdom | |
|
15 | 12 13 14 | sylancl | |
16 | 11 15 | mpbid | |
17 | 13 | domen | |
18 | 16 17 | sylib | |
19 | simpll | |
|
20 | ensym | |
|
21 | 20 | ad2antrl | |
22 | hasheni | |
|
23 | 21 22 | syl | |
24 | 5 | ad2antrr | |
25 | 24 8 | syl | |
26 | 23 25 | eqtrd | |
27 | simplrr | |
|
28 | simprr | |
|
29 | 2 | ad2antrr | |
30 | 1 | hashbcss | |
31 | 13 28 29 30 | mp3an2i | |
32 | 27 31 | fssresd | |
33 | vex | |
|
34 | 33 | resex | |
35 | feq1 | |
|
36 | 35 | anbi2d | |
37 | 36 | anbi2d | |
38 | cnveq | |
|
39 | 38 | imaeq1d | |
40 | cnvresima | |
|
41 | 39 40 | eqtrdi | |
42 | 41 | sseq2d | |
43 | 42 | anbi2d | |
44 | 43 | 2rexbidv | |
45 | 37 44 | imbi12d | |
46 | 34 45 6 | vtocl | |
47 | 19 26 32 46 | syl12anc | |
48 | sstr | |
|
49 | 48 | expcom | |
50 | 49 | ad2antll | |
51 | velpw | |
|
52 | velpw | |
|
53 | 50 51 52 | 3imtr4g | |
54 | id | |
|
55 | inss1 | |
|
56 | 54 55 | sstrdi | |
57 | 56 | a1i | |
58 | 57 | anim2d | |
59 | 53 58 | anim12d | |
60 | 59 | reximdv2 | |
61 | 60 | reximdv | |
62 | 47 61 | mpd | |
63 | 18 62 | exlimddv | |
64 | 1 2 3 4 5 63 | ramub | |