Metamath Proof Explorer


Theorem ramub2

Description: It is sufficient to check the Ramsey property on finite sets of size equal to the upper bound. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses rami.c C=aV,i0b𝒫a|b=i
rami.m φM0
rami.r φRV
rami.f φF:R0
ramub2.n φN0
ramub2.i φs=Nf:sCMRcRx𝒫sFcxxCMf-1c
Assertion ramub2 φMRamseyFN

Proof

Step Hyp Ref Expression
1 rami.c C=aV,i0b𝒫a|b=i
2 rami.m φM0
3 rami.r φRV
4 rami.f φF:R0
5 ramub2.n φN0
6 ramub2.i φs=Nf:sCMRcRx𝒫sFcxxCMf-1c
7 5 adantr φNtg:tCMRN0
8 hashfz1 N01N=N
9 7 8 syl φNtg:tCMR1N=N
10 simprl φNtg:tCMRNt
11 9 10 eqbrtrd φNtg:tCMR1Nt
12 fzfid φNtg:tCMR1NFin
13 vex tV
14 hashdom 1NFintV1Nt1Nt
15 12 13 14 sylancl φNtg:tCMR1Nt1Nt
16 11 15 mpbid φNtg:tCMR1Nt
17 13 domen 1Nts1Nsst
18 16 17 sylib φNtg:tCMRs1Nsst
19 simpll φNtg:tCMR1Nsstφ
20 ensym 1Nss1N
21 20 ad2antrl φNtg:tCMR1Nssts1N
22 hasheni s1Ns=1N
23 21 22 syl φNtg:tCMR1Nssts=1N
24 5 ad2antrr φNtg:tCMR1NsstN0
25 24 8 syl φNtg:tCMR1Nsst1N=N
26 23 25 eqtrd φNtg:tCMR1Nssts=N
27 simplrr φNtg:tCMR1Nsstg:tCMR
28 simprr φNtg:tCMR1Nsstst
29 2 ad2antrr φNtg:tCMR1NsstM0
30 1 hashbcss tVstM0sCMtCM
31 13 28 29 30 mp3an2i φNtg:tCMR1NsstsCMtCM
32 27 31 fssresd φNtg:tCMR1NsstgsCM:sCMR
33 vex gV
34 33 resex gsCMV
35 feq1 f=gsCMf:sCMRgsCM:sCMR
36 35 anbi2d f=gsCMs=Nf:sCMRs=NgsCM:sCMR
37 36 anbi2d f=gsCMφs=Nf:sCMRφs=NgsCM:sCMR
38 cnveq f=gsCMf-1=gsCM-1
39 38 imaeq1d f=gsCMf-1c=gsCM-1c
40 cnvresima gsCM-1c=g-1csCM
41 39 40 eqtrdi f=gsCMf-1c=g-1csCM
42 41 sseq2d f=gsCMxCMf-1cxCMg-1csCM
43 42 anbi2d f=gsCMFcxxCMf-1cFcxxCMg-1csCM
44 43 2rexbidv f=gsCMcRx𝒫sFcxxCMf-1ccRx𝒫sFcxxCMg-1csCM
45 37 44 imbi12d f=gsCMφs=Nf:sCMRcRx𝒫sFcxxCMf-1cφs=NgsCM:sCMRcRx𝒫sFcxxCMg-1csCM
46 34 45 6 vtocl φs=NgsCM:sCMRcRx𝒫sFcxxCMg-1csCM
47 19 26 32 46 syl12anc φNtg:tCMR1NsstcRx𝒫sFcxxCMg-1csCM
48 sstr xsstxt
49 48 expcom stxsxt
50 49 ad2antll φNtg:tCMR1Nsstxsxt
51 velpw x𝒫sxs
52 velpw x𝒫txt
53 50 51 52 3imtr4g φNtg:tCMR1Nsstx𝒫sx𝒫t
54 id xCMg-1csCMxCMg-1csCM
55 inss1 g-1csCMg-1c
56 54 55 sstrdi xCMg-1csCMxCMg-1c
57 56 a1i φNtg:tCMR1NsstxCMg-1csCMxCMg-1c
58 57 anim2d φNtg:tCMR1NsstFcxxCMg-1csCMFcxxCMg-1c
59 53 58 anim12d φNtg:tCMR1Nsstx𝒫sFcxxCMg-1csCMx𝒫tFcxxCMg-1c
60 59 reximdv2 φNtg:tCMR1Nsstx𝒫sFcxxCMg-1csCMx𝒫tFcxxCMg-1c
61 60 reximdv φNtg:tCMR1NsstcRx𝒫sFcxxCMg-1csCMcRx𝒫tFcxxCMg-1c
62 47 61 mpd φNtg:tCMR1NsstcRx𝒫tFcxxCMg-1c
63 18 62 exlimddv φNtg:tCMRcRx𝒫tFcxxCMg-1c
64 1 2 3 4 5 63 ramub φMRamseyFN