Metamath Proof Explorer


Theorem rankeq1o

Description: The only set with rank 1o is the singleton of the empty set. (Contributed by Scott Fenton, 17-Jul-2015)

Ref Expression
Assertion rankeq1o rankA=1𝑜A=

Proof

Step Hyp Ref Expression
1 1n0 1𝑜
2 neeq1 rankA=1𝑜rankA1𝑜
3 1 2 mpbiri rankA=1𝑜rankA
4 3 neneqd rankA=1𝑜¬rankA=
5 fvprc ¬AVrankA=
6 4 5 nsyl2 rankA=1𝑜AV
7 fveqeq2 x=Arankx=1𝑜rankA=1𝑜
8 eqeq1 x=Ax=1𝑜A=1𝑜
9 7 8 imbi12d x=Arankx=1𝑜x=1𝑜rankA=1𝑜A=1𝑜
10 neeq1 rankx=1𝑜rankx1𝑜
11 1 10 mpbiri rankx=1𝑜rankx
12 vex xV
13 12 rankeq0 x=rankx=
14 13 necon3bii xrankx
15 11 14 sylibr rankx=1𝑜x
16 12 rankval rankx=yOn|xR1sucy
17 16 eqeq1i rankx=1𝑜yOn|xR1sucy=1𝑜
18 ssrab2 yOn|xR1sucyOn
19 elirr ¬1𝑜1𝑜
20 1oex 1𝑜V
21 id V=1𝑜V=1𝑜
22 20 21 eleqtrid V=1𝑜1𝑜1𝑜
23 19 22 mto ¬V=1𝑜
24 inteq yOn|xR1sucy=yOn|xR1sucy=
25 int0 =V
26 24 25 eqtrdi yOn|xR1sucy=yOn|xR1sucy=V
27 26 eqeq1d yOn|xR1sucy=yOn|xR1sucy=1𝑜V=1𝑜
28 23 27 mtbiri yOn|xR1sucy=¬yOn|xR1sucy=1𝑜
29 28 necon2ai yOn|xR1sucy=1𝑜yOn|xR1sucy
30 onint yOn|xR1sucyOnyOn|xR1sucyyOn|xR1sucyyOn|xR1sucy
31 18 29 30 sylancr yOn|xR1sucy=1𝑜yOn|xR1sucyyOn|xR1sucy
32 eleq1 yOn|xR1sucy=1𝑜yOn|xR1sucyyOn|xR1sucy1𝑜yOn|xR1sucy
33 31 32 mpbid yOn|xR1sucy=1𝑜1𝑜yOn|xR1sucy
34 suceq y=1𝑜sucy=suc1𝑜
35 34 fveq2d y=1𝑜R1sucy=R1suc1𝑜
36 df-1o 1𝑜=suc
37 36 fveq2i R11𝑜=R1suc
38 0elon On
39 r1suc OnR1suc=𝒫R1
40 38 39 ax-mp R1suc=𝒫R1
41 r10 R1=
42 41 pweqi 𝒫R1=𝒫
43 37 40 42 3eqtri R11𝑜=𝒫
44 43 pweqi 𝒫R11𝑜=𝒫𝒫
45 pw0 𝒫=
46 45 pweqi 𝒫𝒫=𝒫
47 pwpw0 𝒫=
48 44 46 47 3eqtrri =𝒫R11𝑜
49 1on 1𝑜On
50 r1suc 1𝑜OnR1suc1𝑜=𝒫R11𝑜
51 49 50 ax-mp R1suc1𝑜=𝒫R11𝑜
52 48 51 eqtr4i =R1suc1𝑜
53 35 52 eqtr4di y=1𝑜R1sucy=
54 53 eleq2d y=1𝑜xR1sucyx
55 54 elrab 1𝑜yOn|xR1sucy1𝑜Onx
56 33 55 sylib yOn|xR1sucy=1𝑜1𝑜Onx
57 12 elpr xx=x=
58 df-ne x¬x=
59 orel1 ¬x=x=x=x=
60 58 59 sylbi xx=x=x=
61 df1o2 1𝑜=
62 eqeq2 x=1𝑜=x1𝑜=
63 61 62 mpbiri x=1𝑜=x
64 63 eqcomd x=x=1𝑜
65 60 64 syl6com x=x=xx=1𝑜
66 57 65 sylbi xxx=1𝑜
67 66 adantl 1𝑜Onxxx=1𝑜
68 56 67 syl yOn|xR1sucy=1𝑜xx=1𝑜
69 17 68 sylbi rankx=1𝑜xx=1𝑜
70 15 69 mpd rankx=1𝑜x=1𝑜
71 9 70 vtoclg AVrankA=1𝑜A=1𝑜
72 6 71 mpcom rankA=1𝑜A=1𝑜
73 fveq2 A=1𝑜rankA=rank1𝑜
74 r111 R1:On1-1V
75 f1dm R1:On1-1VdomR1=On
76 74 75 ax-mp domR1=On
77 49 76 eleqtrri 1𝑜domR1
78 rankonid 1𝑜domR1rank1𝑜=1𝑜
79 77 78 mpbi rank1𝑜=1𝑜
80 73 79 eqtrdi A=1𝑜rankA=1𝑜
81 72 80 impbii rankA=1𝑜A=1𝑜
82 61 eqeq2i A=1𝑜A=
83 81 82 bitri rankA=1𝑜A=