Metamath Proof Explorer


Theorem reeff1o

Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 10-Nov-2013)

Ref Expression
Assertion reeff1o exp:1-1 onto+

Proof

Step Hyp Ref Expression
1 reeff1 exp:1-1+
2 f1f exp:1-1+exp:+
3 ffn exp:+expFn
4 1 2 3 mp2b expFn
5 frn exp:+ranexp+
6 1 2 5 mp2b ranexp+
7 elrp z+z0<z
8 reclt1 z0<zz<11<1z
9 7 8 sylbi z+z<11<1z
10 rpre z+z
11 rpne0 z+z0
12 10 11 rereccld z+1z
13 reeff1olem 1z1<1zyey=1z
14 12 13 sylan z+1<1zyey=1z
15 eqcom 1z=eyey=1z
16 rpcnne0 z+zz0
17 recn yy
18 efcl yey
19 17 18 syl yey
20 efne0 yey0
21 17 20 syl yey0
22 19 21 jca yeyey0
23 rec11r zz0eyey01z=ey1ey=z
24 16 22 23 syl2an z+y1z=ey1ey=z
25 efcan yeyey=1
26 25 eqcomd y1=eyey
27 negcl yy
28 efcl yey
29 27 28 syl yey
30 ax-1cn 1
31 divmul2 1eyeyey01ey=ey1=eyey
32 30 31 mp3an1 eyeyey01ey=ey1=eyey
33 29 18 20 32 syl12anc y1ey=ey1=eyey
34 26 33 mpbird y1ey=ey
35 17 34 syl y1ey=ey
36 35 eqeq1d y1ey=zey=z
37 36 adantl z+y1ey=zey=z
38 24 37 bitrd z+y1z=eyey=z
39 15 38 bitr3id z+yey=1zey=z
40 39 biimpd z+yey=1zey=z
41 40 reximdva z+yey=1zyey=z
42 41 adantr z+1<1zyey=1zyey=z
43 14 42 mpd z+1<1zyey=z
44 renegcl yy
45 infm3lem xyx=y
46 fveqeq2 x=yex=zey=z
47 44 45 46 rexxfr xex=zyey=z
48 43 47 sylibr z+1<1zxex=z
49 48 ex z+1<1zxex=z
50 9 49 sylbid z+z<1xex=z
51 50 imp z+z<1xex=z
52 ef0 e0=1
53 52 eqeq2i z=e0z=1
54 0re 0
55 fveqeq2 x=0ex=ze0=z
56 55 rspcev 0e0=zxex=z
57 54 56 mpan e0=zxex=z
58 57 eqcoms z=e0xex=z
59 53 58 sylbir z=1xex=z
60 59 adantl z+z=1xex=z
61 reeff1olem z1<zxex=z
62 10 61 sylan z+1<zxex=z
63 1re 1
64 lttri4 z1z<1z=11<z
65 10 63 64 sylancl z+z<1z=11<z
66 51 60 62 65 mpjao3dan z+xex=z
67 fvres xexpx=ex
68 67 eqeq1d xexpx=zex=z
69 68 rexbiia xexpx=zxex=z
70 66 69 sylibr z+xexpx=z
71 fvelrnb expFnzranexpxexpx=z
72 4 71 ax-mp zranexpxexpx=z
73 70 72 sylibr z+zranexp
74 73 ssriv +ranexp
75 6 74 eqssi ranexp=+
76 df-fo exp:onto+expFnranexp=+
77 4 75 76 mpbir2an exp:onto+
78 df-f1o exp:1-1 onto+exp:1-1+exp:onto+
79 1 77 78 mpbir2an exp:1-1 onto+