Metamath Proof Explorer


Theorem rege1logbrege0

Description: The general logarithm, with a real base greater than 1, for a real number greater than or equal to 1 is greater than or equal to 0. (Contributed by AV, 25-May-2020)

Ref Expression
Assertion rege1logbrege0 B1+∞X1+∞0logBX

Proof

Step Hyp Ref Expression
1 1re 1
2 elicopnf 1X1+∞X1X
3 1 2 ax-mp X1+∞X1X
4 id X1XX1X
5 3 4 sylbi X1+∞X1X
6 5 adantl B1+∞X1+∞X1X
7 logge0 X1X0logX
8 6 7 syl B1+∞X1+∞0logX
9 simpl X1XX
10 0lt1 0<1
11 0red X0
12 1red X1
13 id XX
14 ltletr 01X0<11X0<X
15 11 12 13 14 syl3anc X0<11X0<X
16 10 15 mpani X1X0<X
17 16 imp X1X0<X
18 9 17 elrpd X1XX+
19 3 18 sylbi X1+∞X+
20 19 relogcld X1+∞logX
21 20 adantl B1+∞X1+∞logX
22 1xr 1*
23 elioopnf 1*B1+∞B1<B
24 22 23 ax-mp B1+∞B1<B
25 simpl B1<BB
26 0red B0
27 1red B1
28 id BB
29 lttr 01B0<11<B0<B
30 26 27 28 29 syl3anc B0<11<B0<B
31 10 30 mpani B1<B0<B
32 31 imp B1<B0<B
33 25 32 elrpd B1<BB+
34 24 33 sylbi B1+∞B+
35 34 relogcld B1+∞logB
36 35 adantr B1+∞X1+∞logB
37 regt1loggt0 B1+∞0<logB
38 37 adantr B1+∞X1+∞0<logB
39 ge0div logXlogB0<logB0logX0logXlogB
40 21 36 38 39 syl3anc B1+∞X1+∞0logX0logXlogB
41 8 40 mpbid B1+∞X1+∞0logXlogB
42 recn BB
43 42 adantr B1<BB
44 32 gt0ne0d B1<BB0
45 27 28 ltlend B1<B1BB1
46 45 simplbda B1<BB1
47 43 44 46 3jca B1<BBB0B1
48 eldifpr B01BB0B1
49 47 24 48 3imtr4i B1+∞B01
50 recn XX
51 50 adantr X1XX
52 17 gt0ne0d X1XX0
53 51 52 jca X1XXX0
54 eldifsn X0XX0
55 53 3 54 3imtr4i X1+∞X0
56 logbval B01X0logBX=logXlogB
57 49 55 56 syl2an B1+∞X1+∞logBX=logXlogB
58 41 57 breqtrrd B1+∞X1+∞0logBX