| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmph |
|
| 2 |
|
n0 |
|
| 3 |
|
hmeocn |
|
| 4 |
3
|
adantl |
|
| 5 |
|
cntop2 |
|
| 6 |
4 5
|
syl |
|
| 7 |
|
simpll |
|
| 8 |
4
|
adantr |
|
| 9 |
|
simprl |
|
| 10 |
|
cnima |
|
| 11 |
8 9 10
|
syl2anc |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
12 13
|
hmeof1o |
|
| 15 |
14
|
ad2antlr |
|
| 16 |
|
f1ocnv |
|
| 17 |
|
f1ofn |
|
| 18 |
15 16 17
|
3syl |
|
| 19 |
|
elssuni |
|
| 20 |
19
|
ad2antrl |
|
| 21 |
|
simprr |
|
| 22 |
|
fnfvima |
|
| 23 |
18 20 21 22
|
syl3anc |
|
| 24 |
|
regsep |
|
| 25 |
7 11 23 24
|
syl3anc |
|
| 26 |
|
simpllr |
|
| 27 |
|
simprl |
|
| 28 |
|
hmeoima |
|
| 29 |
26 27 28
|
syl2anc |
|
| 30 |
20 21
|
sseldd |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simprrl |
|
| 33 |
18
|
adantr |
|
| 34 |
|
elpreima |
|
| 35 |
33 34
|
syl |
|
| 36 |
31 32 35
|
mpbir2and |
|
| 37 |
|
imacnvcnv |
|
| 38 |
36 37
|
eleqtrdi |
|
| 39 |
|
elssuni |
|
| 40 |
39
|
ad2antrl |
|
| 41 |
12
|
hmeocls |
|
| 42 |
26 40 41
|
syl2anc |
|
| 43 |
|
simprrr |
|
| 44 |
15
|
adantr |
|
| 45 |
|
f1ofun |
|
| 46 |
44 45
|
syl |
|
| 47 |
7
|
adantr |
|
| 48 |
|
regtop |
|
| 49 |
47 48
|
syl |
|
| 50 |
12
|
clsss3 |
|
| 51 |
49 40 50
|
syl2anc |
|
| 52 |
|
f1odm |
|
| 53 |
44 52
|
syl |
|
| 54 |
51 53
|
sseqtrrd |
|
| 55 |
|
funimass3 |
|
| 56 |
46 54 55
|
syl2anc |
|
| 57 |
43 56
|
mpbird |
|
| 58 |
42 57
|
eqsstrd |
|
| 59 |
|
eleq2 |
|
| 60 |
|
fveq2 |
|
| 61 |
60
|
sseq1d |
|
| 62 |
59 61
|
anbi12d |
|
| 63 |
62
|
rspcev |
|
| 64 |
29 38 58 63
|
syl12anc |
|
| 65 |
25 64
|
rexlimddv |
|
| 66 |
65
|
ralrimivva |
|
| 67 |
|
isreg |
|
| 68 |
6 66 67
|
sylanbrc |
|
| 69 |
68
|
expcom |
|
| 70 |
69
|
exlimiv |
|
| 71 |
2 70
|
sylbi |
|
| 72 |
1 71
|
sylbi |
|