Metamath Proof Explorer


Theorem relexpxpmin

Description: The composition of powers of a Cartesian product of non-disjoint sets is the Cartesian product raised to the minimum exponent. (Contributed by RP, 13-Jun-2020)

Ref Expression
Assertion relexpxpmin AUBVABI=ifJ<KJKJ0K0A×BrJrK=A×BrI

Proof

Step Hyp Ref Expression
1 elnn0 K0KK=0
2 elnn0 J0JJ=0
3 ifeqor ifJ<KJK=JifJ<KJK=K
4 andi I=ifJ<KJKifJ<KJK=JifJ<KJK=KI=ifJ<KJKifJ<KJK=JI=ifJ<KJKifJ<KJK=K
5 4 biimpi I=ifJ<KJKifJ<KJK=JifJ<KJK=KI=ifJ<KJKifJ<KJK=JI=ifJ<KJKifJ<KJK=K
6 3 5 mpan2 I=ifJ<KJKI=ifJ<KJKifJ<KJK=JI=ifJ<KJKifJ<KJK=K
7 eqtr I=ifJ<KJKifJ<KJK=JI=J
8 eqtr I=ifJ<KJKifJ<KJK=KI=K
9 7 8 orim12i I=ifJ<KJKifJ<KJK=JI=ifJ<KJKifJ<KJK=KI=JI=K
10 relexpxpnnidm KAUBVABA×BrK=A×B
11 10 imp KAUBVABA×BrK=A×B
12 11 3ad2antl3 I=JJKAUBVABA×BrK=A×B
13 relexpxpnnidm JAUBVABA×BrJ=A×B
14 13 imp JAUBVABA×BrJ=A×B
15 14 3ad2antl2 I=JJKAUBVABA×BrJ=A×B
16 15 oveq1d I=JJKAUBVABA×BrJrK=A×BrK
17 simpl1 I=JJKAUBVABI=J
18 17 oveq2d I=JJKAUBVABA×BrI=A×BrJ
19 18 15 eqtrd I=JJKAUBVABA×BrI=A×B
20 12 16 19 3eqtr4d I=JJKAUBVABA×BrJrK=A×BrI
21 20 3exp1 I=JJKAUBVABA×BrJrK=A×BrI
22 14 3ad2antl2 I=KJKAUBVABA×BrJ=A×B
23 simpl1 I=KJKAUBVABI=K
24 23 eqcomd I=KJKAUBVABK=I
25 22 24 oveq12d I=KJKAUBVABA×BrJrK=A×BrI
26 25 3exp1 I=KJKAUBVABA×BrJrK=A×BrI
27 21 26 jaoi I=JI=KJKAUBVABA×BrJrK=A×BrI
28 6 9 27 3syl I=ifJ<KJKJKAUBVABA×BrJrK=A×BrI
29 28 com13 KJI=ifJ<KJKAUBVABA×BrJrK=A×BrI
30 simp3 KJ=0I=ifJ<KJKI=ifJ<KJK
31 simp2 KJ=0I=ifJ<KJKJ=0
32 simp1 KJ=0I=ifJ<KJKK
33 32 nngt0d KJ=0I=ifJ<KJK0<K
34 31 33 eqbrtrd KJ=0I=ifJ<KJKJ<K
35 34 iftrued KJ=0I=ifJ<KJKifJ<KJK=J
36 30 35 31 3eqtrd KJ=0I=ifJ<KJKI=0
37 simpr1 KJ=0I=0AUBVABAU
38 simpr2 KJ=0I=0AUBVABBV
39 37 38 xpexd KJ=0I=0AUBVABA×BV
40 dmexg A×BVdomA×BV
41 rnexg A×BVranA×BV
42 40 41 jca A×BVdomA×BVranA×BV
43 unexg domA×BVranA×BVdomA×BranA×BV
44 39 42 43 3syl KJ=0I=0AUBVABdomA×BranA×BV
45 simpl1 KJ=0I=0AUBVABK
46 45 nnnn0d KJ=0I=0AUBVABK0
47 relexpiidm domA×BranA×BVK0IdomA×BranA×BrK=IdomA×BranA×B
48 44 46 47 syl2anc KJ=0I=0AUBVABIdomA×BranA×BrK=IdomA×BranA×B
49 simpl2 KJ=0I=0AUBVABJ=0
50 49 oveq2d KJ=0I=0AUBVABA×BrJ=A×Br0
51 relexp0g A×BVA×Br0=IdomA×BranA×B
52 39 51 syl KJ=0I=0AUBVABA×Br0=IdomA×BranA×B
53 50 52 eqtrd KJ=0I=0AUBVABA×BrJ=IdomA×BranA×B
54 53 oveq1d KJ=0I=0AUBVABA×BrJrK=IdomA×BranA×BrK
55 simpl3 KJ=0I=0AUBVABI=0
56 55 oveq2d KJ=0I=0AUBVABA×BrI=A×Br0
57 56 52 eqtrd KJ=0I=0AUBVABA×BrI=IdomA×BranA×B
58 48 54 57 3eqtr4d KJ=0I=0AUBVABA×BrJrK=A×BrI
59 58 ex KJ=0I=0AUBVABA×BrJrK=A×BrI
60 36 59 syld3an3 KJ=0I=ifJ<KJKAUBVABA×BrJrK=A×BrI
61 60 3exp KJ=0I=ifJ<KJKAUBVABA×BrJrK=A×BrI
62 29 61 jaod KJJ=0I=ifJ<KJKAUBVABA×BrJrK=A×BrI
63 2 62 biimtrid KJ0I=ifJ<KJKAUBVABA×BrJrK=A×BrI
64 simp1 K=0J0I=ifJ<KJKK=0
65 2 biimpi J0JJ=0
66 65 3ad2ant2 K=0J0I=ifJ<KJKJJ=0
67 simp3 K=0J0I=ifJ<KJKI=ifJ<KJK
68 nn0nlt0 J0¬J<0
69 68 3ad2ant2 K=0J0I=ifJ<KJK¬J<0
70 64 breq2d K=0J0I=ifJ<KJKJ<KJ<0
71 69 70 mtbird K=0J0I=ifJ<KJK¬J<K
72 71 iffalsed K=0J0I=ifJ<KJKifJ<KJK=K
73 67 72 64 3eqtrd K=0J0I=ifJ<KJKI=0
74 13 3ad2ant2 K=0JI=0AUBVABA×BrJ=A×B
75 74 imp K=0JI=0AUBVABA×BrJ=A×B
76 75 oveq1d K=0JI=0AUBVABA×BrJr0=A×Br0
77 simpl1 K=0JI=0AUBVABK=0
78 77 oveq2d K=0JI=0AUBVABA×BrJrK=A×BrJr0
79 simpl3 K=0JI=0AUBVABI=0
80 79 oveq2d K=0JI=0AUBVABA×BrI=A×Br0
81 76 78 80 3eqtr4d K=0JI=0AUBVABA×BrJrK=A×BrI
82 81 3exp1 K=0JI=0AUBVABA×BrJrK=A×BrI
83 simpr1 K=0J=0I=0AUBVABAU
84 simpr2 K=0J=0I=0AUBVABBV
85 83 84 xpexd K=0J=0I=0AUBVABA×BV
86 relexp0idm A×BVA×Br0r0=A×Br0
87 85 86 syl K=0J=0I=0AUBVABA×Br0r0=A×Br0
88 simpl2 K=0J=0I=0AUBVABJ=0
89 88 oveq2d K=0J=0I=0AUBVABA×BrJ=A×Br0
90 simpl1 K=0J=0I=0AUBVABK=0
91 89 90 oveq12d K=0J=0I=0AUBVABA×BrJrK=A×Br0r0
92 simpl3 K=0J=0I=0AUBVABI=0
93 92 oveq2d K=0J=0I=0AUBVABA×BrI=A×Br0
94 87 91 93 3eqtr4d K=0J=0I=0AUBVABA×BrJrK=A×BrI
95 94 3exp1 K=0J=0I=0AUBVABA×BrJrK=A×BrI
96 82 95 jaod K=0JJ=0I=0AUBVABA×BrJrK=A×BrI
97 64 66 73 96 syl3c K=0J0I=ifJ<KJKAUBVABA×BrJrK=A×BrI
98 97 3exp K=0J0I=ifJ<KJKAUBVABA×BrJrK=A×BrI
99 63 98 jaoi KK=0J0I=ifJ<KJKAUBVABA×BrJrK=A×BrI
100 1 99 sylbi K0J0I=ifJ<KJKAUBVABA×BrJrK=A×BrI
101 100 3imp31 I=ifJ<KJKJ0K0AUBVABA×BrJrK=A×BrI
102 101 impcom AUBVABI=ifJ<KJKJ0K0A×BrJrK=A×BrI