Metamath Proof Explorer


Theorem resscatc

Description: The restriction of the category of categories to a subset is the category of categories in the subset. Thus, the CatCatU categories for different U are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses resscatc.c C=CatCatU
resscatc.d D=CatCatV
resscatc.1 φUW
resscatc.2 φVU
Assertion resscatc φHom𝑓C𝑠V=Hom𝑓Dcomp𝑓C𝑠V=comp𝑓D

Proof

Step Hyp Ref Expression
1 resscatc.c C=CatCatU
2 resscatc.d D=CatCatV
3 resscatc.1 φUW
4 resscatc.2 φVU
5 eqid BaseD=BaseD
6 3 4 ssexd φVV
7 6 adantr φxVCatyVCatVV
8 eqid HomD=HomD
9 simprl φxVCatyVCatxVCat
10 2 5 6 catcbas φBaseD=VCat
11 10 adantr φxVCatyVCatBaseD=VCat
12 9 11 eleqtrrd φxVCatyVCatxBaseD
13 simprr φxVCatyVCatyVCat
14 13 11 eleqtrrd φxVCatyVCatyBaseD
15 2 5 7 8 12 14 catchom φxVCatyVCatxHomDy=xFuncy
16 eqid BaseC=BaseC
17 3 adantr φxVCatyVCatUW
18 eqid HomC=HomC
19 inass VUCat=VUCat
20 1 16 3 catcbas φBaseC=UCat
21 20 ineq2d φVBaseC=VUCat
22 19 21 eqtr4id φVUCat=VBaseC
23 df-ss VUVU=V
24 4 23 sylib φVU=V
25 24 ineq1d φVUCat=VCat
26 eqid C𝑠V=C𝑠V
27 26 16 ressbas VVVBaseC=BaseC𝑠V
28 6 27 syl φVBaseC=BaseC𝑠V
29 22 25 28 3eqtr3d φVCat=BaseC𝑠V
30 26 16 ressbasss BaseC𝑠VBaseC
31 29 30 eqsstrdi φVCatBaseC
32 31 adantr φxVCatyVCatVCatBaseC
33 32 9 sseldd φxVCatyVCatxBaseC
34 32 13 sseldd φxVCatyVCatyBaseC
35 1 16 17 18 33 34 catchom φxVCatyVCatxHomCy=xFuncy
36 26 18 resshom VVHomC=HomC𝑠V
37 6 36 syl φHomC=HomC𝑠V
38 37 oveqdr φxVCatyVCatxHomCy=xHomC𝑠Vy
39 15 35 38 3eqtr2rd φxVCatyVCatxHomC𝑠Vy=xHomDy
40 39 ralrimivva φxVCatyVCatxHomC𝑠Vy=xHomDy
41 eqid HomC𝑠V=HomC𝑠V
42 10 eqcomd φVCat=BaseD
43 41 8 29 42 homfeq φHom𝑓C𝑠V=Hom𝑓DxVCatyVCatxHomC𝑠Vy=xHomDy
44 40 43 mpbird φHom𝑓C𝑠V=Hom𝑓D
45 6 ad2antrr φxVCatyVCatzVCatfxHomDygyHomDzVV
46 eqid compD=compD
47 simplr1 φxVCatyVCatzVCatfxHomDygyHomDzxVCat
48 10 ad2antrr φxVCatyVCatzVCatfxHomDygyHomDzBaseD=VCat
49 47 48 eleqtrrd φxVCatyVCatzVCatfxHomDygyHomDzxBaseD
50 simplr2 φxVCatyVCatzVCatfxHomDygyHomDzyVCat
51 50 48 eleqtrrd φxVCatyVCatzVCatfxHomDygyHomDzyBaseD
52 simplr3 φxVCatyVCatzVCatfxHomDygyHomDzzVCat
53 52 48 eleqtrrd φxVCatyVCatzVCatfxHomDygyHomDzzBaseD
54 simprl φxVCatyVCatzVCatfxHomDygyHomDzfxHomDy
55 2 5 45 8 49 51 catchom φxVCatyVCatzVCatfxHomDygyHomDzxHomDy=xFuncy
56 54 55 eleqtrd φxVCatyVCatzVCatfxHomDygyHomDzfxFuncy
57 simprr φxVCatyVCatzVCatfxHomDygyHomDzgyHomDz
58 2 5 45 8 51 53 catchom φxVCatyVCatzVCatfxHomDygyHomDzyHomDz=yFuncz
59 57 58 eleqtrd φxVCatyVCatzVCatfxHomDygyHomDzgyFuncz
60 2 5 45 46 49 51 53 56 59 catcco φxVCatyVCatzVCatfxHomDygyHomDzgxycompDzf=gfuncf
61 3 ad2antrr φxVCatyVCatzVCatfxHomDygyHomDzUW
62 eqid compC=compC
63 31 ad2antrr φxVCatyVCatzVCatfxHomDygyHomDzVCatBaseC
64 63 47 sseldd φxVCatyVCatzVCatfxHomDygyHomDzxBaseC
65 63 50 sseldd φxVCatyVCatzVCatfxHomDygyHomDzyBaseC
66 63 52 sseldd φxVCatyVCatzVCatfxHomDygyHomDzzBaseC
67 1 16 61 62 64 65 66 56 59 catcco φxVCatyVCatzVCatfxHomDygyHomDzgxycompCzf=gfuncf
68 26 62 ressco VVcompC=compC𝑠V
69 6 68 syl φcompC=compC𝑠V
70 69 ad2antrr φxVCatyVCatzVCatfxHomDygyHomDzcompC=compC𝑠V
71 70 oveqd φxVCatyVCatzVCatfxHomDygyHomDzxycompCz=xycompC𝑠Vz
72 71 oveqd φxVCatyVCatzVCatfxHomDygyHomDzgxycompCzf=gxycompC𝑠Vzf
73 60 67 72 3eqtr2d φxVCatyVCatzVCatfxHomDygyHomDzgxycompDzf=gxycompC𝑠Vzf
74 73 ralrimivva φxVCatyVCatzVCatfxHomDygyHomDzgxycompDzf=gxycompC𝑠Vzf
75 74 ralrimivvva φxVCatyVCatzVCatfxHomDygyHomDzgxycompDzf=gxycompC𝑠Vzf
76 eqid compC𝑠V=compC𝑠V
77 44 eqcomd φHom𝑓D=Hom𝑓C𝑠V
78 46 76 8 42 29 77 comfeq φcomp𝑓D=comp𝑓C𝑠VxVCatyVCatzVCatfxHomDygyHomDzgxycompDzf=gxycompC𝑠Vzf
79 75 78 mpbird φcomp𝑓D=comp𝑓C𝑠V
80 79 eqcomd φcomp𝑓C𝑠V=comp𝑓D
81 44 80 jca φHom𝑓C𝑠V=Hom𝑓Dcomp𝑓C𝑠V=comp𝑓D