Description: If the infimum does not belong to a set of reals, the set is a subset of the unbounded above, left-open interval, with lower bound equal to the infimum. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ressiooinf.a | |
|
ressiooinf.s | |
||
ressiooinf.n | |
||
ressiooinf.i | |
||
Assertion | ressiooinf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressiooinf.a | |
|
2 | ressiooinf.s | |
|
3 | ressiooinf.n | |
|
4 | ressiooinf.i | |
|
5 | ressxr | |
|
6 | 5 | a1i | |
7 | 1 6 | sstrd | |
8 | 7 | adantr | |
9 | 8 | infxrcld | |
10 | 2 9 | eqeltrid | |
11 | pnfxr | |
|
12 | 11 | a1i | |
13 | 1 | adantr | |
14 | simpr | |
|
15 | 13 14 | sseldd | |
16 | 7 | sselda | |
17 | infxrlb | |
|
18 | 8 14 17 | syl2anc | |
19 | 2 18 | eqbrtrid | |
20 | id | |
|
21 | 20 | eqcomd | |
22 | 21 | adantl | |
23 | simpl | |
|
24 | 22 23 | eqeltrd | |
25 | 24 | adantll | |
26 | 3 | ad2antrr | |
27 | 25 26 | pm2.65da | |
28 | 27 | neqned | |
29 | 28 | necomd | |
30 | 10 16 19 29 | xrleneltd | |
31 | 15 | ltpnfd | |
32 | 10 12 15 30 31 | eliood | |
33 | 32 4 | eleqtrrdi | |
34 | 33 | ralrimiva | |
35 | dfss3 | |
|
36 | 34 35 | sylibr | |