Metamath Proof Explorer


Theorem ressxms

Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion ressxms K∞MetSpAVK𝑠A∞MetSp

Proof

Step Hyp Ref Expression
1 eqid BaseK=BaseK
2 eqid distKBaseK×BaseK=distKBaseK×BaseK
3 1 2 xmsxmet K∞MetSpdistKBaseK×BaseK∞MetBaseK
4 3 adantr K∞MetSpAVdistKBaseK×BaseK∞MetBaseK
5 xmetres distKBaseK×BaseK∞MetBaseKdistKBaseK×BaseKA×A∞MetBaseKA
6 4 5 syl K∞MetSpAVdistKBaseK×BaseKA×A∞MetBaseKA
7 resres distKBaseK×BaseKA×A=distKBaseK×BaseKA×A
8 inxp BaseK×BaseKA×A=BaseKA×BaseKA
9 8 reseq2i distKBaseK×BaseKA×A=distKBaseKA×BaseKA
10 7 9 eqtri distKBaseK×BaseKA×A=distKBaseKA×BaseKA
11 eqid K𝑠A=K𝑠A
12 eqid distK=distK
13 11 12 ressds AVdistK=distK𝑠A
14 13 adantl K∞MetSpAVdistK=distK𝑠A
15 incom BaseKA=ABaseK
16 11 1 ressbas AVABaseK=BaseK𝑠A
17 16 adantl K∞MetSpAVABaseK=BaseK𝑠A
18 15 17 eqtrid K∞MetSpAVBaseKA=BaseK𝑠A
19 18 sqxpeqd K∞MetSpAVBaseKA×BaseKA=BaseK𝑠A×BaseK𝑠A
20 14 19 reseq12d K∞MetSpAVdistKBaseKA×BaseKA=distK𝑠ABaseK𝑠A×BaseK𝑠A
21 10 20 eqtrid K∞MetSpAVdistKBaseK×BaseKA×A=distK𝑠ABaseK𝑠A×BaseK𝑠A
22 18 fveq2d K∞MetSpAV∞MetBaseKA=∞MetBaseK𝑠A
23 6 21 22 3eltr3d K∞MetSpAVdistK𝑠ABaseK𝑠A×BaseK𝑠A∞MetBaseK𝑠A
24 eqid TopOpenK=TopOpenK
25 24 1 2 xmstopn K∞MetSpTopOpenK=MetOpendistKBaseK×BaseK
26 25 adantr K∞MetSpAVTopOpenK=MetOpendistKBaseK×BaseK
27 26 oveq1d K∞MetSpAVTopOpenK𝑡BaseKA=MetOpendistKBaseK×BaseK𝑡BaseKA
28 inss1 BaseKABaseK
29 xpss12 BaseKABaseKBaseKABaseKBaseKA×BaseKABaseK×BaseK
30 28 28 29 mp2an BaseKA×BaseKABaseK×BaseK
31 resabs1 BaseKA×BaseKABaseK×BaseKdistKBaseK×BaseKBaseKA×BaseKA=distKBaseKA×BaseKA
32 30 31 ax-mp distKBaseK×BaseKBaseKA×BaseKA=distKBaseKA×BaseKA
33 10 32 eqtr4i distKBaseK×BaseKA×A=distKBaseK×BaseKBaseKA×BaseKA
34 eqid MetOpendistKBaseK×BaseK=MetOpendistKBaseK×BaseK
35 eqid MetOpendistKBaseK×BaseKA×A=MetOpendistKBaseK×BaseKA×A
36 33 34 35 metrest distKBaseK×BaseK∞MetBaseKBaseKABaseKMetOpendistKBaseK×BaseK𝑡BaseKA=MetOpendistKBaseK×BaseKA×A
37 4 28 36 sylancl K∞MetSpAVMetOpendistKBaseK×BaseK𝑡BaseKA=MetOpendistKBaseK×BaseKA×A
38 27 37 eqtrd K∞MetSpAVTopOpenK𝑡BaseKA=MetOpendistKBaseK×BaseKA×A
39 xmstps K∞MetSpKTopSp
40 1 24 tpsuni KTopSpBaseK=TopOpenK
41 39 40 syl K∞MetSpBaseK=TopOpenK
42 41 adantr K∞MetSpAVBaseK=TopOpenK
43 42 ineq2d K∞MetSpAVABaseK=ATopOpenK
44 15 43 eqtrid K∞MetSpAVBaseKA=ATopOpenK
45 44 oveq2d K∞MetSpAVTopOpenK𝑡BaseKA=TopOpenK𝑡ATopOpenK
46 1 24 istps KTopSpTopOpenKTopOnBaseK
47 39 46 sylib K∞MetSpTopOpenKTopOnBaseK
48 eqid TopOpenK=TopOpenK
49 48 restin TopOpenKTopOnBaseKAVTopOpenK𝑡A=TopOpenK𝑡ATopOpenK
50 47 49 sylan K∞MetSpAVTopOpenK𝑡A=TopOpenK𝑡ATopOpenK
51 45 50 eqtr4d K∞MetSpAVTopOpenK𝑡BaseKA=TopOpenK𝑡A
52 21 fveq2d K∞MetSpAVMetOpendistKBaseK×BaseKA×A=MetOpendistK𝑠ABaseK𝑠A×BaseK𝑠A
53 38 51 52 3eqtr3d K∞MetSpAVTopOpenK𝑡A=MetOpendistK𝑠ABaseK𝑠A×BaseK𝑠A
54 11 24 resstopn TopOpenK𝑡A=TopOpenK𝑠A
55 eqid BaseK𝑠A=BaseK𝑠A
56 eqid distK𝑠ABaseK𝑠A×BaseK𝑠A=distK𝑠ABaseK𝑠A×BaseK𝑠A
57 54 55 56 isxms2 K𝑠A∞MetSpdistK𝑠ABaseK𝑠A×BaseK𝑠A∞MetBaseK𝑠ATopOpenK𝑡A=MetOpendistK𝑠ABaseK𝑠A×BaseK𝑠A
58 23 53 57 sylanbrc K∞MetSpAVK𝑠A∞MetSp