Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ressxms | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | 1 2 | xmsxmet | |
4 | 3 | adantr | |
5 | xmetres | |
|
6 | 4 5 | syl | |
7 | resres | |
|
8 | inxp | |
|
9 | 8 | reseq2i | |
10 | 7 9 | eqtri | |
11 | eqid | |
|
12 | eqid | |
|
13 | 11 12 | ressds | |
14 | 13 | adantl | |
15 | incom | |
|
16 | 11 1 | ressbas | |
17 | 16 | adantl | |
18 | 15 17 | eqtrid | |
19 | 18 | sqxpeqd | |
20 | 14 19 | reseq12d | |
21 | 10 20 | eqtrid | |
22 | 18 | fveq2d | |
23 | 6 21 22 | 3eltr3d | |
24 | eqid | |
|
25 | 24 1 2 | xmstopn | |
26 | 25 | adantr | |
27 | 26 | oveq1d | |
28 | inss1 | |
|
29 | xpss12 | |
|
30 | 28 28 29 | mp2an | |
31 | resabs1 | |
|
32 | 30 31 | ax-mp | |
33 | 10 32 | eqtr4i | |
34 | eqid | |
|
35 | eqid | |
|
36 | 33 34 35 | metrest | |
37 | 4 28 36 | sylancl | |
38 | 27 37 | eqtrd | |
39 | xmstps | |
|
40 | 1 24 | tpsuni | |
41 | 39 40 | syl | |
42 | 41 | adantr | |
43 | 42 | ineq2d | |
44 | 15 43 | eqtrid | |
45 | 44 | oveq2d | |
46 | 1 24 | istps | |
47 | 39 46 | sylib | |
48 | eqid | |
|
49 | 48 | restin | |
50 | 47 49 | sylan | |
51 | 45 50 | eqtr4d | |
52 | 21 | fveq2d | |
53 | 38 51 52 | 3eqtr3d | |
54 | 11 24 | resstopn | |
55 | eqid | |
|
56 | eqid | |
|
57 | 54 55 56 | isxms2 | |
58 | 23 53 57 | sylanbrc | |