Metamath Proof Explorer


Theorem rgmoddimOLD

Description: Obsolete version of rlmdim as of 21-Mar-2025. (Contributed by Thierry Arnoux, 5-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis rlmdim.1 V=ringLModF
Assertion rgmoddimOLD FFielddimV=1

Proof

Step Hyp Ref Expression
1 rlmdim.1 V=ringLModF
2 isfld FFieldFDivRingFCRing
3 2 simplbi FFieldFDivRing
4 eqid BaseF=BaseF
5 4 ressid FFieldF𝑠BaseF=F
6 5 3 eqeltrd FFieldF𝑠BaseFDivRing
7 drngring FDivRingFRing
8 4 subrgid FRingBaseFSubRingF
9 3 7 8 3syl FFieldBaseFSubRingF
10 rlmval ringLModF=subringAlgFBaseF
11 1 10 eqtri V=subringAlgFBaseF
12 eqid F𝑠BaseF=F𝑠BaseF
13 11 12 sralvec FDivRingF𝑠BaseFDivRingBaseFSubRingFVLVec
14 3 6 9 13 syl3anc FFieldVLVec
15 3 7 syl FFieldFRing
16 ssidd FFieldBaseFBaseF
17 11 4 sraring FRingBaseFBaseFVRing
18 15 16 17 syl2anc FFieldVRing
19 eqid BaseV=BaseV
20 eqid 1V=1V
21 19 20 ringidcl VRing1VBaseV
22 18 21 syl FField1VBaseV
23 11 4 sradrng FDivRingBaseFBaseFVDivRing
24 3 16 23 syl2anc FFieldVDivRing
25 eqid 0V=0V
26 25 20 drngunz VDivRing1V0V
27 24 26 syl FField1V0V
28 19 25 lindssn VLVec1VBaseV1V0V1VLIndSV
29 14 22 27 28 syl3anc FField1VLIndSV
30 rspval RSpanF=LSpanringLModF
31 1 fveq2i LSpanV=LSpanringLModF
32 30 31 eqtr4i RSpanF=LSpanV
33 32 fveq1i RSpanF1F=LSpanV1F
34 eqid RSpanF=RSpanF
35 eqid 1F=1F
36 34 4 35 rsp1 FRingRSpanF1F=BaseF
37 33 36 eqtr3id FRingLSpanV1F=BaseF
38 3 7 37 3syl FFieldLSpanV1F=BaseF
39 11 a1i FFieldV=subringAlgFBaseF
40 eqidd FField1F=1F
41 39 40 16 sra1r FField1F=1V
42 41 sneqd FField1F=1V
43 42 fveq2d FFieldLSpanV1F=LSpanV1V
44 39 16 srabase FFieldBaseF=BaseV
45 38 43 44 3eqtr3d FFieldLSpanV1V=BaseV
46 eqid LBasisV=LBasisV
47 eqid LSpanV=LSpanV
48 19 46 47 islbs4 1VLBasisV1VLIndSVLSpanV1V=BaseV
49 29 45 48 sylanbrc FField1VLBasisV
50 46 dimval VLVec1VLBasisVdimV=1V
51 14 49 50 syl2anc FFielddimV=1V
52 fvex 1VV
53 hashsng 1VV1V=1
54 52 53 ax-mp 1V=1
55 51 54 eqtrdi FFielddimV=1