Description: Lemma 1 for rhmsubcsetc . (Contributed by AV, 9-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rhmsubcsetc.c | |
|
rhmsubcsetc.u | |
||
rhmsubcsetc.b | |
||
rhmsubcsetc.h | |
||
Assertion | rhmsubcsetclem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmsubcsetc.c | |
|
2 | rhmsubcsetc.u | |
|
3 | rhmsubcsetc.b | |
|
4 | rhmsubcsetc.h | |
|
5 | 3 | eleq2d | |
6 | elin | |
|
7 | 6 | simplbi | |
8 | 5 7 | syl6bi | |
9 | 8 | imp | |
10 | eqid | |
|
11 | 10 | idrhm | |
12 | 9 11 | syl | |
13 | eqid | |
|
14 | 2 | adantr | |
15 | 6 | simprbi | |
16 | 5 15 | syl6bi | |
17 | 16 | imp | |
18 | 1 13 14 17 | estrcid | |
19 | 4 | oveqdr | |
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | 20 21 2 22 | ringchomfval | |
24 | 20 21 2 | ringcbas | |
25 | incom | |
|
26 | 3 25 | eqtrdi | |
27 | 26 | eqcomd | |
28 | 24 27 | eqtrd | |
29 | 28 | sqxpeqd | |
30 | 29 | reseq2d | |
31 | 23 30 | eqtrd | |
32 | 31 | adantr | |
33 | 32 | eqcomd | |
34 | 33 | oveqd | |
35 | 26 | eleq2d | |
36 | 35 | biimpa | |
37 | 24 | adantr | |
38 | 36 37 | eleqtrrd | |
39 | 20 21 14 22 38 38 | ringchom | |
40 | 19 34 39 | 3eqtrd | |
41 | 12 18 40 | 3eltr4d | |