Metamath Proof Explorer


Theorem rhmsubcsetclem1

Description: Lemma 1 for rhmsubcsetc . (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypotheses rhmsubcsetc.c C=ExtStrCatU
rhmsubcsetc.u φUV
rhmsubcsetc.b φB=RingU
rhmsubcsetc.h φH=RingHomB×B
Assertion rhmsubcsetclem1 φxBIdCxxHx

Proof

Step Hyp Ref Expression
1 rhmsubcsetc.c C=ExtStrCatU
2 rhmsubcsetc.u φUV
3 rhmsubcsetc.b φB=RingU
4 rhmsubcsetc.h φH=RingHomB×B
5 3 eleq2d φxBxRingU
6 elin xRingUxRingxU
7 6 simplbi xRingUxRing
8 5 7 syl6bi φxBxRing
9 8 imp φxBxRing
10 eqid Basex=Basex
11 10 idrhm xRingIBasexxRingHomx
12 9 11 syl φxBIBasexxRingHomx
13 eqid IdC=IdC
14 2 adantr φxBUV
15 6 simprbi xRingUxU
16 5 15 syl6bi φxBxU
17 16 imp φxBxU
18 1 13 14 17 estrcid φxBIdCx=IBasex
19 4 oveqdr φxBxHx=xRingHomB×Bx
20 eqid RingCatU=RingCatU
21 eqid BaseRingCatU=BaseRingCatU
22 eqid HomRingCatU=HomRingCatU
23 20 21 2 22 ringchomfval φHomRingCatU=RingHomBaseRingCatU×BaseRingCatU
24 20 21 2 ringcbas φBaseRingCatU=URing
25 incom RingU=URing
26 3 25 eqtrdi φB=URing
27 26 eqcomd φURing=B
28 24 27 eqtrd φBaseRingCatU=B
29 28 sqxpeqd φBaseRingCatU×BaseRingCatU=B×B
30 29 reseq2d φRingHomBaseRingCatU×BaseRingCatU=RingHomB×B
31 23 30 eqtrd φHomRingCatU=RingHomB×B
32 31 adantr φxBHomRingCatU=RingHomB×B
33 32 eqcomd φxBRingHomB×B=HomRingCatU
34 33 oveqd φxBxRingHomB×Bx=xHomRingCatUx
35 26 eleq2d φxBxURing
36 35 biimpa φxBxURing
37 24 adantr φxBBaseRingCatU=URing
38 36 37 eleqtrrd φxBxBaseRingCatU
39 20 21 14 22 38 38 ringchom φxBxHomRingCatUx=xRingHomx
40 19 34 39 3eqtrd φxBxHx=xRingHomx
41 12 18 40 3eltr4d φxBIdCxxHx