Metamath Proof Explorer


Theorem rnbra

Description: The set of bras equals the set of continuous linear functionals. (Contributed by NM, 26-May-2006) (New usage is discouraged.)

Ref Expression
Assertion rnbra ranbra=LinFnContFn

Proof

Step Hyp Ref Expression
1 lnfncnbd tLinFntContFnnormfnt
2 1 pm5.32i tLinFntContFntLinFnnormfnt
3 elin tLinFnContFntLinFntContFn
4 ax-hilex V
5 4 mptex yyihxV
6 df-bra bra=xyyihx
7 5 6 fnmpti braFn
8 fvelrnb braFntranbraxbrax=t
9 7 8 ax-mp tranbraxbrax=t
10 bralnfn xbraxLinFn
11 brabn xnormfnbrax
12 10 11 jca xbraxLinFnnormfnbrax
13 eleq1 brax=tbraxLinFntLinFn
14 fveq2 brax=tnormfnbrax=normfnt
15 14 eleq1d brax=tnormfnbraxnormfnt
16 13 15 anbi12d brax=tbraxLinFnnormfnbraxtLinFnnormfnt
17 12 16 syl5ibcom xbrax=ttLinFnnormfnt
18 17 rexlimiv xbrax=ttLinFnnormfnt
19 riesz1 tLinFnnormfntxyty=yihx
20 19 biimpa tLinFnnormfntxyty=yihx
21 braval xybraxy=yihx
22 eqtr3 braxy=yihxty=yihxbraxy=ty
23 22 ex braxy=yihxty=yihxbraxy=ty
24 21 23 syl xyty=yihxbraxy=ty
25 24 ralimdva xyty=yihxybraxy=ty
26 25 adantl tLinFnnormfntxyty=yihxybraxy=ty
27 brafn xbrax:
28 lnfnf tLinFnt:
29 28 adantr tLinFnnormfntt:
30 ffn brax:braxFn
31 ffn t:tFn
32 eqfnfv braxFntFnbrax=tybraxy=ty
33 30 31 32 syl2an brax:t:brax=tybraxy=ty
34 27 29 33 syl2anr tLinFnnormfntxbrax=tybraxy=ty
35 26 34 sylibrd tLinFnnormfntxyty=yihxbrax=t
36 35 reximdva tLinFnnormfntxyty=yihxxbrax=t
37 20 36 mpd tLinFnnormfntxbrax=t
38 18 37 impbii xbrax=ttLinFnnormfnt
39 9 38 bitri tranbratLinFnnormfnt
40 2 3 39 3bitr4ri tranbratLinFnContFn
41 40 eqriv ranbra=LinFnContFn