Metamath Proof Explorer


Theorem rrxmvallem

Description: Support of the function used for building the distance . (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypothesis rrxmval.1 X=hI|finSupp0h
Assertion rrxmvallem IVFXGXkIFkGk2supp0supp0Fsupp0G

Proof

Step Hyp Ref Expression
1 rrxmval.1 X=hI|finSupp0h
2 simprl IVFXGXxIFx=0Gx=0Fx=0
3 0cn 0
4 2 3 eqeltrdi IVFXGXxIFx=0Gx=0Fx
5 simprr IVFXGXxIFx=0Gx=0Gx=0
6 2 5 eqtr4d IVFXGXxIFx=0Gx=0Fx=Gx
7 4 6 subeq0bd IVFXGXxIFx=0Gx=0FxGx=0
8 7 sq0id IVFXGXxIFx=0Gx=0FxGx2=0
9 8 ex IVFXGXxIFx=0Gx=0FxGx2=0
10 ioran ¬Fx0Gx0¬Fx0¬Gx0
11 nne ¬Fx0Fx=0
12 nne ¬Gx0Gx=0
13 11 12 anbi12i ¬Fx0¬Gx0Fx=0Gx=0
14 10 13 bitri ¬Fx0Gx0Fx=0Gx=0
15 14 a1i IVFXGXxI¬Fx0Gx0Fx=0Gx=0
16 eqidd IVFXGXxIkIFkGk2=kIFkGk2
17 simpr IVFXGXxIk=xk=x
18 17 fveq2d IVFXGXxIk=xFk=Fx
19 17 fveq2d IVFXGXxIk=xGk=Gx
20 18 19 oveq12d IVFXGXxIk=xFkGk=FxGx
21 20 oveq1d IVFXGXxIk=xFkGk2=FxGx2
22 simpr IVFXGXxIxI
23 ovex FxGx2V
24 23 a1i IVFXGXxIFxGx2V
25 16 21 22 24 fvmptd IVFXGXxIkIFkGk2x=FxGx2
26 25 neeq1d IVFXGXxIkIFkGk2x0FxGx20
27 26 bicomd IVFXGXxIFxGx20kIFkGk2x0
28 27 necon1bbid IVFXGXxI¬kIFkGk2x0FxGx2=0
29 9 15 28 3imtr4d IVFXGXxI¬Fx0Gx0¬kIFkGk2x0
30 29 con4d IVFXGXxIkIFkGk2x0Fx0Gx0
31 30 ss2rabdv IVFXGXxI|kIFkGk2x0xI|Fx0Gx0
32 unrab xI|Fx0xI|Gx0=xI|Fx0Gx0
33 31 32 sseqtrrdi IVFXGXxI|kIFkGk2x0xI|Fx0xI|Gx0
34 simp1 IVFXGXIV
35 ovex FkGk2V
36 eqid kIFkGk2=kIFkGk2
37 35 36 fnmpti kIFkGk2FnI
38 suppvalfn kIFkGk2FnIIV0kIFkGk2supp0=xI|kIFkGk2x0
39 37 3 38 mp3an13 IVkIFkGk2supp0=xI|kIFkGk2x0
40 34 39 syl IVFXGXkIFkGk2supp0=xI|kIFkGk2x0
41 elrabi FhI|finSupp0hFI
42 41 1 eleq2s FXFI
43 elmapi FIF:I
44 ffn F:IFFnI
45 42 43 44 3syl FXFFnI
46 45 3ad2ant2 IVFXGXFFnI
47 3 a1i IVFXGX0
48 suppvalfn FFnIIV0Fsupp0=xI|Fx0
49 46 34 47 48 syl3anc IVFXGXFsupp0=xI|Fx0
50 elrabi GhI|finSupp0hGI
51 50 1 eleq2s GXGI
52 elmapi GIG:I
53 ffn G:IGFnI
54 51 52 53 3syl GXGFnI
55 54 3ad2ant3 IVFXGXGFnI
56 suppvalfn GFnIIV0Gsupp0=xI|Gx0
57 55 34 47 56 syl3anc IVFXGXGsupp0=xI|Gx0
58 49 57 uneq12d IVFXGXsupp0Fsupp0G=xI|Fx0xI|Gx0
59 33 40 58 3sstr4d IVFXGXkIFkGk2supp0supp0Fsupp0G