| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxmval.1 |
|
| 2 |
|
simprl |
|
| 3 |
|
0cn |
|
| 4 |
2 3
|
eqeltrdi |
|
| 5 |
|
simprr |
|
| 6 |
2 5
|
eqtr4d |
|
| 7 |
4 6
|
subeq0bd |
|
| 8 |
7
|
sq0id |
|
| 9 |
8
|
ex |
|
| 10 |
|
ioran |
|
| 11 |
|
nne |
|
| 12 |
|
nne |
|
| 13 |
11 12
|
anbi12i |
|
| 14 |
10 13
|
bitri |
|
| 15 |
14
|
a1i |
|
| 16 |
|
eqidd |
|
| 17 |
|
simpr |
|
| 18 |
17
|
fveq2d |
|
| 19 |
17
|
fveq2d |
|
| 20 |
18 19
|
oveq12d |
|
| 21 |
20
|
oveq1d |
|
| 22 |
|
simpr |
|
| 23 |
|
ovex |
|
| 24 |
23
|
a1i |
|
| 25 |
16 21 22 24
|
fvmptd |
|
| 26 |
25
|
neeq1d |
|
| 27 |
26
|
bicomd |
|
| 28 |
27
|
necon1bbid |
|
| 29 |
9 15 28
|
3imtr4d |
|
| 30 |
29
|
con4d |
|
| 31 |
30
|
ss2rabdv |
|
| 32 |
|
unrab |
|
| 33 |
31 32
|
sseqtrrdi |
|
| 34 |
|
simp1 |
|
| 35 |
|
ovex |
|
| 36 |
|
eqid |
|
| 37 |
35 36
|
fnmpti |
|
| 38 |
|
suppvalfn |
|
| 39 |
37 3 38
|
mp3an13 |
|
| 40 |
34 39
|
syl |
|
| 41 |
|
elrabi |
|
| 42 |
41 1
|
eleq2s |
|
| 43 |
|
elmapi |
|
| 44 |
|
ffn |
|
| 45 |
42 43 44
|
3syl |
|
| 46 |
45
|
3ad2ant2 |
|
| 47 |
3
|
a1i |
|
| 48 |
|
suppvalfn |
|
| 49 |
46 34 47 48
|
syl3anc |
|
| 50 |
|
elrabi |
|
| 51 |
50 1
|
eleq2s |
|
| 52 |
|
elmapi |
|
| 53 |
|
ffn |
|
| 54 |
51 52 53
|
3syl |
|
| 55 |
54
|
3ad2ant3 |
|
| 56 |
|
suppvalfn |
|
| 57 |
55 34 47 56
|
syl3anc |
|
| 58 |
49 57
|
uneq12d |
|
| 59 |
33 40 58
|
3sstr4d |
|