| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxspheres.e |
|
| 2 |
|
rrxspheres.p |
|
| 3 |
|
rrxspheres.d |
|
| 4 |
|
rrxspheres.s |
|
| 5 |
1
|
fvexi |
|
| 6 |
|
id |
|
| 7 |
|
eqid |
|
| 8 |
6 1 7
|
rrxbasefi |
|
| 9 |
2 8
|
eqtr4id |
|
| 10 |
9
|
eleq2d |
|
| 11 |
10
|
biimpa |
|
| 12 |
11
|
3adant3 |
|
| 13 |
12
|
adantl |
|
| 14 |
|
rexr |
|
| 15 |
14
|
3ad2ant3 |
|
| 16 |
15
|
anim2i |
|
| 17 |
16
|
ancomd |
|
| 18 |
|
elxrge0 |
|
| 19 |
17 18
|
sylibr |
|
| 20 |
7 4 3
|
sphere |
|
| 21 |
5 13 19 20
|
mp3an2i |
|
| 22 |
|
simp1 |
|
| 23 |
22 1 7
|
rrxbasefi |
|
| 24 |
23 2
|
eqtr4di |
|
| 25 |
24
|
adantl |
|
| 26 |
25
|
rabeqdv |
|
| 27 |
21 26
|
eqtrd |
|
| 28 |
27
|
ex |
|
| 29 |
7 4 3
|
spheres |
|
| 30 |
5 29
|
ax-mp |
|
| 31 |
|
fvex |
|
| 32 |
31
|
rabex |
|
| 33 |
30 32
|
dmmpo |
|
| 34 |
|
0xr |
|
| 35 |
|
pnfxr |
|
| 36 |
34 35
|
pm3.2i |
|
| 37 |
|
elicc1 |
|
| 38 |
36 37
|
mp1i |
|
| 39 |
|
simp2 |
|
| 40 |
38 39
|
biimtrdi |
|
| 41 |
40
|
con3d |
|
| 42 |
41
|
imp |
|
| 43 |
42
|
intnand |
|
| 44 |
|
ndmovg |
|
| 45 |
33 43 44
|
sylancr |
|
| 46 |
1
|
fveq2i |
|
| 47 |
3 46
|
eqtri |
|
| 48 |
47
|
rrxmetfi |
|
| 49 |
48
|
3ad2ant1 |
|
| 50 |
49
|
adantr |
|
| 51 |
2
|
fveq2i |
|
| 52 |
50 51
|
eleqtrrdi |
|
| 53 |
|
simpr |
|
| 54 |
|
simp2 |
|
| 55 |
54
|
adantr |
|
| 56 |
|
metge0 |
|
| 57 |
52 53 55 56
|
syl3anc |
|
| 58 |
|
breq2 |
|
| 59 |
57 58
|
syl5ibcom |
|
| 60 |
59
|
con3d |
|
| 61 |
60
|
impancom |
|
| 62 |
61
|
imp |
|
| 63 |
62
|
ralrimiva |
|
| 64 |
|
eqcom |
|
| 65 |
|
rabeq0 |
|
| 66 |
64 65
|
bitri |
|
| 67 |
63 66
|
sylibr |
|
| 68 |
45 67
|
eqtrd |
|
| 69 |
68
|
expcom |
|
| 70 |
28 69
|
pm2.61i |
|