Metamath Proof Explorer


Theorem scmatcrng

Description: The subring of scalar matrices (over a commutative ring) is a commutative ring. (Contributed by AV, 21-Aug-2019)

Ref Expression
Hypotheses scmatid.a A=NMatR
scmatid.b B=BaseA
scmatid.e E=BaseR
scmatid.0 0˙=0R
scmatid.s S=NScMatR
scmatcrng.c C=A𝑠S
Assertion scmatcrng NFinRCRingCCRing

Proof

Step Hyp Ref Expression
1 scmatid.a A=NMatR
2 scmatid.b B=BaseA
3 scmatid.e E=BaseR
4 scmatid.0 0˙=0R
5 scmatid.s S=NScMatR
6 scmatcrng.c C=A𝑠S
7 crngring RCRingRRing
8 1 2 3 4 5 scmatsrng NFinRRingSSubRingA
9 7 8 sylan2 NFinRCRingSSubRingA
10 6 subrgring SSubRingACRing
11 9 10 syl NFinRCRingCRing
12 simp1lr NFinRCRingxSySaNbNRCRing
13 eqid BaseA=BaseA
14 simp2 NFinRCRingxSySaNbNaN
15 simp3 NFinRCRingxSySaNbNbN
16 1 13 5 scmatmat NFinRCRingxSxBaseA
17 16 imp NFinRCRingxSxBaseA
18 17 adantrr NFinRCRingxSySxBaseA
19 18 3ad2ant1 NFinRCRingxSySaNbNxBaseA
20 1 3 13 14 15 19 matecld NFinRCRingxSySaNbNaxbE
21 1 13 5 scmatmat NFinRCRingySyBaseA
22 21 imp NFinRCRingySyBaseA
23 22 adantrl NFinRCRingxSySyBaseA
24 23 3ad2ant1 NFinRCRingxSySaNbNyBaseA
25 1 3 13 14 15 24 matecld NFinRCRingxSySaNbNaybE
26 eqid R=R
27 3 26 crngcom RCRingaxbEaybEaxbRayb=aybRaxb
28 12 20 25 27 syl3anc NFinRCRingxSySaNbNaxbRayb=aybRaxb
29 28 ifeq1d NFinRCRingxSySaNbNifa=baxbRayb0˙=ifa=baybRaxb0˙
30 29 mpoeq3dva NFinRCRingxSySaN,bNifa=baxbRayb0˙=aN,bNifa=baybRaxb0˙
31 7 anim2i NFinRCRingNFinRRing
32 eqid NDMatR=NDMatR
33 1 2 3 4 5 32 scmatdmat NFinRRingxSxNDMatR
34 7 33 sylan2 NFinRCRingxSxNDMatR
35 1 2 3 4 5 32 scmatdmat NFinRRingySyNDMatR
36 7 35 sylan2 NFinRCRingySyNDMatR
37 34 36 anim12d NFinRCRingxSySxNDMatRyNDMatR
38 37 imp NFinRCRingxSySxNDMatRyNDMatR
39 1 2 4 32 dmatmul NFinRRingxNDMatRyNDMatRxAy=aN,bNifa=baxbRayb0˙
40 31 38 39 syl2an2r NFinRCRingxSySxAy=aN,bNifa=baxbRayb0˙
41 38 ancomd NFinRCRingxSySyNDMatRxNDMatR
42 1 2 4 32 dmatmul NFinRRingyNDMatRxNDMatRyAx=aN,bNifa=baybRaxb0˙
43 31 41 42 syl2an2r NFinRCRingxSySyAx=aN,bNifa=baybRaxb0˙
44 30 40 43 3eqtr4d NFinRCRingxSySxAy=yAx
45 44 ralrimivva NFinRCRingxSySxAy=yAx
46 6 subrgbas SSubRingAS=BaseC
47 46 eqcomd SSubRingABaseC=S
48 eqid A=A
49 6 48 ressmulr SSubRingAA=C
50 49 eqcomd SSubRingAC=A
51 50 oveqd SSubRingAxCy=xAy
52 50 oveqd SSubRingAyCx=yAx
53 51 52 eqeq12d SSubRingAxCy=yCxxAy=yAx
54 47 53 raleqbidv SSubRingAyBaseCxCy=yCxySxAy=yAx
55 47 54 raleqbidv SSubRingAxBaseCyBaseCxCy=yCxxSySxAy=yAx
56 9 55 syl NFinRCRingxBaseCyBaseCxCy=yCxxSySxAy=yAx
57 45 56 mpbird NFinRCRingxBaseCyBaseCxCy=yCx
58 eqid BaseC=BaseC
59 eqid C=C
60 58 59 iscrng2 CCRingCRingxBaseCyBaseCxCy=yCx
61 11 57 60 sylanbrc NFinRCRingCCRing