Metamath Proof Explorer


Theorem scmatcrng

Description: The subring of scalar matrices (over a commutative ring) is a commutative ring. (Contributed by AV, 21-Aug-2019)

Ref Expression
Hypotheses scmatid.a A = N Mat R
scmatid.b B = Base A
scmatid.e E = Base R
scmatid.0 0 ˙ = 0 R
scmatid.s S = N ScMat R
scmatcrng.c C = A 𝑠 S
Assertion scmatcrng N Fin R CRing C CRing

Proof

Step Hyp Ref Expression
1 scmatid.a A = N Mat R
2 scmatid.b B = Base A
3 scmatid.e E = Base R
4 scmatid.0 0 ˙ = 0 R
5 scmatid.s S = N ScMat R
6 scmatcrng.c C = A 𝑠 S
7 crngring R CRing R Ring
8 1 2 3 4 5 scmatsrng N Fin R Ring S SubRing A
9 7 8 sylan2 N Fin R CRing S SubRing A
10 6 subrgring S SubRing A C Ring
11 9 10 syl N Fin R CRing C Ring
12 simp1lr N Fin R CRing x S y S a N b N R CRing
13 eqid Base A = Base A
14 simp2 N Fin R CRing x S y S a N b N a N
15 simp3 N Fin R CRing x S y S a N b N b N
16 1 13 5 scmatmat N Fin R CRing x S x Base A
17 16 imp N Fin R CRing x S x Base A
18 17 adantrr N Fin R CRing x S y S x Base A
19 18 3ad2ant1 N Fin R CRing x S y S a N b N x Base A
20 1 3 13 14 15 19 matecld N Fin R CRing x S y S a N b N a x b E
21 1 13 5 scmatmat N Fin R CRing y S y Base A
22 21 imp N Fin R CRing y S y Base A
23 22 adantrl N Fin R CRing x S y S y Base A
24 23 3ad2ant1 N Fin R CRing x S y S a N b N y Base A
25 1 3 13 14 15 24 matecld N Fin R CRing x S y S a N b N a y b E
26 eqid R = R
27 3 26 crngcom R CRing a x b E a y b E a x b R a y b = a y b R a x b
28 12 20 25 27 syl3anc N Fin R CRing x S y S a N b N a x b R a y b = a y b R a x b
29 28 ifeq1d N Fin R CRing x S y S a N b N if a = b a x b R a y b 0 ˙ = if a = b a y b R a x b 0 ˙
30 29 mpoeq3dva N Fin R CRing x S y S a N , b N if a = b a x b R a y b 0 ˙ = a N , b N if a = b a y b R a x b 0 ˙
31 7 anim2i N Fin R CRing N Fin R Ring
32 eqid N DMat R = N DMat R
33 1 2 3 4 5 32 scmatdmat N Fin R Ring x S x N DMat R
34 7 33 sylan2 N Fin R CRing x S x N DMat R
35 1 2 3 4 5 32 scmatdmat N Fin R Ring y S y N DMat R
36 7 35 sylan2 N Fin R CRing y S y N DMat R
37 34 36 anim12d N Fin R CRing x S y S x N DMat R y N DMat R
38 37 imp N Fin R CRing x S y S x N DMat R y N DMat R
39 1 2 4 32 dmatmul N Fin R Ring x N DMat R y N DMat R x A y = a N , b N if a = b a x b R a y b 0 ˙
40 31 38 39 syl2an2r N Fin R CRing x S y S x A y = a N , b N if a = b a x b R a y b 0 ˙
41 38 ancomd N Fin R CRing x S y S y N DMat R x N DMat R
42 1 2 4 32 dmatmul N Fin R Ring y N DMat R x N DMat R y A x = a N , b N if a = b a y b R a x b 0 ˙
43 31 41 42 syl2an2r N Fin R CRing x S y S y A x = a N , b N if a = b a y b R a x b 0 ˙
44 30 40 43 3eqtr4d N Fin R CRing x S y S x A y = y A x
45 44 ralrimivva N Fin R CRing x S y S x A y = y A x
46 6 subrgbas S SubRing A S = Base C
47 46 eqcomd S SubRing A Base C = S
48 eqid A = A
49 6 48 ressmulr S SubRing A A = C
50 49 eqcomd S SubRing A C = A
51 50 oveqd S SubRing A x C y = x A y
52 50 oveqd S SubRing A y C x = y A x
53 51 52 eqeq12d S SubRing A x C y = y C x x A y = y A x
54 47 53 raleqbidv S SubRing A y Base C x C y = y C x y S x A y = y A x
55 47 54 raleqbidv S SubRing A x Base C y Base C x C y = y C x x S y S x A y = y A x
56 9 55 syl N Fin R CRing x Base C y Base C x C y = y C x x S y S x A y = y A x
57 45 56 mpbird N Fin R CRing x Base C y Base C x C y = y C x
58 eqid Base C = Base C
59 eqid C = C
60 58 59 iscrng2 C CRing C Ring x Base C y Base C x C y = y C x
61 11 57 60 sylanbrc N Fin R CRing C CRing