Description: The subring of scalar matrices (over a commutative ring) is a commutative ring. (Contributed by AV, 21-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | scmatid.a | |
|
scmatid.b | |
||
scmatid.e | |
||
scmatid.0 | |
||
scmatid.s | |
||
scmatcrng.c | |
||
Assertion | scmatcrng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatid.a | |
|
2 | scmatid.b | |
|
3 | scmatid.e | |
|
4 | scmatid.0 | |
|
5 | scmatid.s | |
|
6 | scmatcrng.c | |
|
7 | crngring | |
|
8 | 1 2 3 4 5 | scmatsrng | |
9 | 7 8 | sylan2 | |
10 | 6 | subrgring | |
11 | 9 10 | syl | |
12 | simp1lr | |
|
13 | eqid | |
|
14 | simp2 | |
|
15 | simp3 | |
|
16 | 1 13 5 | scmatmat | |
17 | 16 | imp | |
18 | 17 | adantrr | |
19 | 18 | 3ad2ant1 | |
20 | 1 3 13 14 15 19 | matecld | |
21 | 1 13 5 | scmatmat | |
22 | 21 | imp | |
23 | 22 | adantrl | |
24 | 23 | 3ad2ant1 | |
25 | 1 3 13 14 15 24 | matecld | |
26 | eqid | |
|
27 | 3 26 | crngcom | |
28 | 12 20 25 27 | syl3anc | |
29 | 28 | ifeq1d | |
30 | 29 | mpoeq3dva | |
31 | 7 | anim2i | |
32 | eqid | |
|
33 | 1 2 3 4 5 32 | scmatdmat | |
34 | 7 33 | sylan2 | |
35 | 1 2 3 4 5 32 | scmatdmat | |
36 | 7 35 | sylan2 | |
37 | 34 36 | anim12d | |
38 | 37 | imp | |
39 | 1 2 4 32 | dmatmul | |
40 | 31 38 39 | syl2an2r | |
41 | 38 | ancomd | |
42 | 1 2 4 32 | dmatmul | |
43 | 31 41 42 | syl2an2r | |
44 | 30 40 43 | 3eqtr4d | |
45 | 44 | ralrimivva | |
46 | 6 | subrgbas | |
47 | 46 | eqcomd | |
48 | eqid | |
|
49 | 6 48 | ressmulr | |
50 | 49 | eqcomd | |
51 | 50 | oveqd | |
52 | 50 | oveqd | |
53 | 51 52 | eqeq12d | |
54 | 47 53 | raleqbidv | |
55 | 47 54 | raleqbidv | |
56 | 9 55 | syl | |
57 | 45 56 | mpbird | |
58 | eqid | |
|
59 | eqid | |
|
60 | 58 59 | iscrng2 | |
61 | 11 57 60 | sylanbrc | |