Metamath Proof Explorer


Theorem setcmon

Description: A monomorphism of sets is an injection. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses setcmon.c C=SetCatU
setcmon.u φUV
setcmon.x φXU
setcmon.y φYU
setcmon.h M=MonoC
Assertion setcmon φFXMYF:X1-1Y

Proof

Step Hyp Ref Expression
1 setcmon.c C=SetCatU
2 setcmon.u φUV
3 setcmon.x φXU
4 setcmon.y φYU
5 setcmon.h M=MonoC
6 eqid BaseC=BaseC
7 eqid HomC=HomC
8 eqid compC=compC
9 1 setccat UVCCat
10 2 9 syl φCCat
11 1 2 setcbas φU=BaseC
12 3 11 eleqtrd φXBaseC
13 4 11 eleqtrd φYBaseC
14 6 7 8 5 10 12 13 monhom φXMYXHomCY
15 14 sselda φFXMYFXHomCY
16 1 2 7 3 4 elsetchom φFXHomCYF:XY
17 16 biimpa φFXHomCYF:XY
18 15 17 syldan φFXMYF:XY
19 simprr φFXMYxXyXFx=FyFx=Fy
20 19 sneqd φFXMYxXyXFx=FyFx=Fy
21 20 xpeq2d φFXMYxXyXFx=FyX×Fx=X×Fy
22 18 adantr φFXMYxXyXFx=FyF:XY
23 22 ffnd φFXMYxXyXFx=FyFFnX
24 simprll φFXMYxXyXFx=FyxX
25 fcoconst FFnXxXFX×x=X×Fx
26 23 24 25 syl2anc φFXMYxXyXFx=FyFX×x=X×Fx
27 simprlr φFXMYxXyXFx=FyyX
28 fcoconst FFnXyXFX×y=X×Fy
29 23 27 28 syl2anc φFXMYxXyXFx=FyFX×y=X×Fy
30 21 26 29 3eqtr4d φFXMYxXyXFx=FyFX×x=FX×y
31 2 ad2antrr φFXMYxXyXFx=FyUV
32 3 ad2antrr φFXMYxXyXFx=FyXU
33 4 ad2antrr φFXMYxXyXFx=FyYU
34 fconst6g xXX×x:XX
35 24 34 syl φFXMYxXyXFx=FyX×x:XX
36 1 31 8 32 32 33 35 22 setcco φFXMYxXyXFx=FyFXXcompCYX×x=FX×x
37 fconst6g yXX×y:XX
38 27 37 syl φFXMYxXyXFx=FyX×y:XX
39 1 31 8 32 32 33 38 22 setcco φFXMYxXyXFx=FyFXXcompCYX×y=FX×y
40 30 36 39 3eqtr4d φFXMYxXyXFx=FyFXXcompCYX×x=FXXcompCYX×y
41 10 ad2antrr φFXMYxXyXFx=FyCCat
42 12 ad2antrr φFXMYxXyXFx=FyXBaseC
43 13 ad2antrr φFXMYxXyXFx=FyYBaseC
44 simplr φFXMYxXyXFx=FyFXMY
45 1 31 7 32 32 elsetchom φFXMYxXyXFx=FyX×xXHomCXX×x:XX
46 35 45 mpbird φFXMYxXyXFx=FyX×xXHomCX
47 1 31 7 32 32 elsetchom φFXMYxXyXFx=FyX×yXHomCXX×y:XX
48 38 47 mpbird φFXMYxXyXFx=FyX×yXHomCX
49 6 7 8 5 41 42 43 42 44 46 48 moni φFXMYxXyXFx=FyFXXcompCYX×x=FXXcompCYX×yX×x=X×y
50 40 49 mpbid φFXMYxXyXFx=FyX×x=X×y
51 50 fveq1d φFXMYxXyXFx=FyX×xx=X×yx
52 vex xV
53 52 fvconst2 xXX×xx=x
54 24 53 syl φFXMYxXyXFx=FyX×xx=x
55 vex yV
56 55 fvconst2 xXX×yx=y
57 24 56 syl φFXMYxXyXFx=FyX×yx=y
58 51 54 57 3eqtr3d φFXMYxXyXFx=Fyx=y
59 58 expr φFXMYxXyXFx=Fyx=y
60 59 ralrimivva φFXMYxXyXFx=Fyx=y
61 dff13 F:X1-1YF:XYxXyXFx=Fyx=y
62 18 60 61 sylanbrc φFXMYF:X1-1Y
63 f1f F:X1-1YF:XY
64 16 biimpar φF:XYFXHomCY
65 63 64 sylan2 φF:X1-1YFXHomCY
66 11 adantr φF:X1-1YU=BaseC
67 66 eleq2d φF:X1-1YzUzBaseC
68 2 ad2antrr φF:X1-1YzUgzHomCXhzHomCXUV
69 simprl φF:X1-1YzUgzHomCXhzHomCXzU
70 3 ad2antrr φF:X1-1YzUgzHomCXhzHomCXXU
71 4 ad2antrr φF:X1-1YzUgzHomCXhzHomCXYU
72 simprrl φF:X1-1YzUgzHomCXhzHomCXgzHomCX
73 1 68 7 69 70 elsetchom φF:X1-1YzUgzHomCXhzHomCXgzHomCXg:zX
74 72 73 mpbid φF:X1-1YzUgzHomCXhzHomCXg:zX
75 63 ad2antlr φF:X1-1YzUgzHomCXhzHomCXF:XY
76 1 68 8 69 70 71 74 75 setcco φF:X1-1YzUgzHomCXhzHomCXFzXcompCYg=Fg
77 simprrr φF:X1-1YzUgzHomCXhzHomCXhzHomCX
78 1 68 7 69 70 elsetchom φF:X1-1YzUgzHomCXhzHomCXhzHomCXh:zX
79 77 78 mpbid φF:X1-1YzUgzHomCXhzHomCXh:zX
80 1 68 8 69 70 71 79 75 setcco φF:X1-1YzUgzHomCXhzHomCXFzXcompCYh=Fh
81 76 80 eqeq12d φF:X1-1YzUgzHomCXhzHomCXFzXcompCYg=FzXcompCYhFg=Fh
82 simplr φF:X1-1YzUgzHomCXhzHomCXF:X1-1Y
83 cocan1 F:X1-1Yg:zXh:zXFg=Fhg=h
84 82 74 79 83 syl3anc φF:X1-1YzUgzHomCXhzHomCXFg=Fhg=h
85 84 biimpd φF:X1-1YzUgzHomCXhzHomCXFg=Fhg=h
86 81 85 sylbid φF:X1-1YzUgzHomCXhzHomCXFzXcompCYg=FzXcompCYhg=h
87 86 anassrs φF:X1-1YzUgzHomCXhzHomCXFzXcompCYg=FzXcompCYhg=h
88 87 ralrimivva φF:X1-1YzUgzHomCXhzHomCXFzXcompCYg=FzXcompCYhg=h
89 88 ex φF:X1-1YzUgzHomCXhzHomCXFzXcompCYg=FzXcompCYhg=h
90 67 89 sylbird φF:X1-1YzBaseCgzHomCXhzHomCXFzXcompCYg=FzXcompCYhg=h
91 90 ralrimiv φF:X1-1YzBaseCgzHomCXhzHomCXFzXcompCYg=FzXcompCYhg=h
92 6 7 8 5 10 12 13 ismon2 φFXMYFXHomCYzBaseCgzHomCXhzHomCXFzXcompCYg=FzXcompCYhg=h
93 92 adantr φF:X1-1YFXMYFXHomCYzBaseCgzHomCXhzHomCXFzXcompCYg=FzXcompCYhg=h
94 65 91 93 mpbir2and φF:X1-1YFXMY
95 62 94 impbida φFXMYF:X1-1Y