Metamath Proof Explorer


Theorem sigapildsyslem

Description: Lemma for sigapildsys . (Contributed by Thierry Arnoux, 13-Jun-2020)

Ref Expression
Hypotheses dynkin.p P=s𝒫𝒫O|fiss
dynkin.l L=s𝒫𝒫O|sxsOxsx𝒫sxωDisjyxyxs
sigapildsyslem.n nφ
sigapildsyslem.1 φtPL
sigapildsyslem.2 φAt
sigapildsyslem.3 φNFin
sigapildsyslem.4 φnNBt
Assertion sigapildsyslem φAnNBt

Proof

Step Hyp Ref Expression
1 dynkin.p P=s𝒫𝒫O|fiss
2 dynkin.l L=s𝒫𝒫O|sxsOxsx𝒫sxωDisjyxyxs
3 sigapildsyslem.n nφ
4 sigapildsyslem.1 φtPL
5 sigapildsyslem.2 φAt
6 sigapildsyslem.3 φNFin
7 sigapildsyslem.4 φnNBt
8 iuneq1 N=nNB=nB
9 0iun nB=
10 8 9 eqtrdi N=nNB=
11 10 difeq2d N=AnNB=A
12 dif0 A=A
13 11 12 eqtrdi N=AnNB=A
14 13 adantl φN=AnNB=A
15 5 adantr φN=At
16 14 15 eqeltrd φN=AnNBt
17 iindif2 NnNAB=AnNB
18 17 adantl φNnNAB=AnNB
19 4 adantr φNtPL
20 19 elin1d φNtP
21 1 ispisys tPt𝒫𝒫Ofitt
22 20 21 sylib φNt𝒫𝒫Ofitt
23 22 simprd φNfitt
24 nfv nN
25 3 24 nfan nφN
26 22 simpld φNt𝒫𝒫O
27 26 elpwid φNt𝒫O
28 5 adantr φNAt
29 27 28 sseldd φNA𝒫O
30 29 elpwid φNAO
31 30 adantr φNnNAO
32 difin2 AOAB=OBA
33 31 32 syl φNnNAB=OBA
34 23 adantr φNnNfitt
35 19 adantr φNnNtPL
36 19 elin2d φNtL
37 2 isldsys tLt𝒫𝒫OtxtOxtx𝒫txωDisjyxyxt
38 36 37 sylib φNt𝒫𝒫OtxtOxtx𝒫txωDisjyxyxt
39 38 simprd φNtxtOxtx𝒫txωDisjyxyxt
40 39 simp2d φNxtOxt
41 40 adantr φNnNxtOxt
42 7 adantlr φNnNBt
43 nfv xOBt
44 difeq2 x=BOx=OB
45 44 eleq1d x=BOxtOBt
46 43 45 rspc BtxtOxtOBt
47 42 46 syl φNnNxtOxtOBt
48 41 47 mpd φNnNOBt
49 28 adantr φNnNAt
50 inelfi tPLOBtAtOBAfit
51 35 48 49 50 syl3anc φNnNOBAfit
52 34 51 sseldd φNnNOBAt
53 33 52 eqeltrd φNnNABt
54 53 ex φNnNABt
55 25 54 ralrimi φNnNABt
56 simpr φNN
57 6 adantr φNNFin
58 vex tV
59 iinfi tVnNABtNNFinnNABfit
60 58 59 mpan nNABtNNFinnNABfit
61 55 56 57 60 syl3anc φNnNABfit
62 23 61 sseldd φNnNABt
63 18 62 eqeltrrd φNAnNBt
64 16 63 pm2.61dane φAnNBt