Description: Lemma for sigapildsys . (Contributed by Thierry Arnoux, 13-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dynkin.p | |
|
dynkin.l | |
||
sigapildsyslem.n | |
||
sigapildsyslem.1 | |
||
sigapildsyslem.2 | |
||
sigapildsyslem.3 | |
||
sigapildsyslem.4 | |
||
Assertion | sigapildsyslem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dynkin.p | |
|
2 | dynkin.l | |
|
3 | sigapildsyslem.n | |
|
4 | sigapildsyslem.1 | |
|
5 | sigapildsyslem.2 | |
|
6 | sigapildsyslem.3 | |
|
7 | sigapildsyslem.4 | |
|
8 | iuneq1 | |
|
9 | 0iun | |
|
10 | 8 9 | eqtrdi | |
11 | 10 | difeq2d | |
12 | dif0 | |
|
13 | 11 12 | eqtrdi | |
14 | 13 | adantl | |
15 | 5 | adantr | |
16 | 14 15 | eqeltrd | |
17 | iindif2 | |
|
18 | 17 | adantl | |
19 | 4 | adantr | |
20 | 19 | elin1d | |
21 | 1 | ispisys | |
22 | 20 21 | sylib | |
23 | 22 | simprd | |
24 | nfv | |
|
25 | 3 24 | nfan | |
26 | 22 | simpld | |
27 | 26 | elpwid | |
28 | 5 | adantr | |
29 | 27 28 | sseldd | |
30 | 29 | elpwid | |
31 | 30 | adantr | |
32 | difin2 | |
|
33 | 31 32 | syl | |
34 | 23 | adantr | |
35 | 19 | adantr | |
36 | 19 | elin2d | |
37 | 2 | isldsys | |
38 | 36 37 | sylib | |
39 | 38 | simprd | |
40 | 39 | simp2d | |
41 | 40 | adantr | |
42 | 7 | adantlr | |
43 | nfv | |
|
44 | difeq2 | |
|
45 | 44 | eleq1d | |
46 | 43 45 | rspc | |
47 | 42 46 | syl | |
48 | 41 47 | mpd | |
49 | 28 | adantr | |
50 | inelfi | |
|
51 | 35 48 49 50 | syl3anc | |
52 | 34 51 | sseldd | |
53 | 33 52 | eqeltrd | |
54 | 53 | ex | |
55 | 25 54 | ralrimi | |
56 | simpr | |
|
57 | 6 | adantr | |
58 | vex | |
|
59 | iinfi | |
|
60 | 58 59 | mpan | |
61 | 55 56 57 60 | syl3anc | |
62 | 23 61 | sseldd | |
63 | 18 62 | eqeltrrd | |
64 | 16 63 | pm2.61dane | |