Metamath Proof Explorer


Theorem signstf

Description: The zero skipping sign word is a word. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
Assertion signstf FWordTFWord

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 1 2 3 4 signstfv FWordTF=n0..^FWi=0nsgnFi
6 neg1rr 1
7 0re 0
8 1re 1
9 tpssi 101101
10 6 7 8 9 mp3an 101
11 1 2 signswbase 101=BaseW
12 1 2 signswmnd WMnd
13 12 a1i FWordn0..^FWMnd
14 fzo0ssnn0 0..^F0
15 nn0uz 0=0
16 14 15 sseqtri 0..^F0
17 16 a1i FWord0..^F0
18 17 sselda FWordn0..^Fn0
19 wrdf FWordF:0..^F
20 19 ad2antrr FWordn0..^Fi0nF:0..^F
21 fzssfzo n0..^F0n0..^F
22 21 adantl FWordn0..^F0n0..^F
23 22 sselda FWordn0..^Fi0ni0..^F
24 20 23 ffvelcdmd FWordn0..^Fi0nFi
25 24 rexrd FWordn0..^Fi0nFi*
26 sgncl Fi*sgnFi101
27 25 26 syl FWordn0..^Fi0nsgnFi101
28 11 13 18 27 gsumncl FWordn0..^FWi=0nsgnFi101
29 10 28 sselid FWordn0..^FWi=0nsgnFi
30 5 29 fmpt3d FWordTF:0..^F
31 iswrdi TF:0..^FTFWord
32 30 31 syl FWordTFWord