Metamath Proof Explorer


Theorem signsvfnn

Description: Adding a letter of a different sign as the highest coefficient changes the sign. (Contributed by Thierry Arnoux, 12-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
signsvf.e φEWord
signsvf.0 φE00
signsvf.f φF=E++⟨“A”⟩
signsvf.a φA
signsvf.n N=E
signsvf.b B=EN1
Assertion signsvfnn φBA<0VFVE=1

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 signsvf.e φEWord
6 signsvf.0 φE00
7 signsvf.f φF=E++⟨“A”⟩
8 signsvf.a φA
9 signsvf.n N=E
10 signsvf.b B=EN1
11 5 adantr φBA<0EWord
12 5 eldifad φEWord
13 wrdf EWordE:0..^E
14 12 13 syl φE:0..^E
15 9 oveq1i N1=E1
16 eldifsn EWordEWordE
17 5 16 sylib φEWordE
18 lennncl EWordEE
19 fzo0end EE10..^E
20 17 18 19 3syl φE10..^E
21 15 20 eqeltrid φN10..^E
22 14 21 ffvelcdmd φEN1
23 22 recnd φEN1
24 10 23 eqeltrid φB
25 24 adantr φBA<0B
26 8 recnd φA
27 26 adantr φBA<0A
28 simpr φBA<0BA<0
29 28 lt0ne0d φBA<0BA0
30 25 27 29 mulne0bad φBA<0B0
31 10 30 eqnetrrid φBA<0EN10
32 1 2 3 4 9 signsvtn0 EWordEN10TEN1=sgnEN1
33 10 fveq2i sgnB=sgnEN1
34 32 33 eqtr4di EWordEN10TEN1=sgnB
35 11 31 34 syl2anc φBA<0TEN1=sgnB
36 35 fveq2d φBA<0sgnTEN1=sgnsgnB
37 10 22 eqeltrid φB
38 37 adantr φBA<0B
39 38 rexrd φBA<0B*
40 sgnsgn B*sgnsgnB=sgnB
41 39 40 syl φBA<0sgnsgnB=sgnB
42 36 41 eqtrd φBA<0sgnTEN1=sgnB
43 42 oveq2d φBA<0sgnAsgnTEN1=sgnAsgnB
44 26 24 mulcomd φAB=BA
45 44 breq1d φAB<0BA<0
46 sgnmulsgn ABAB<0sgnAsgnB<0
47 8 37 46 syl2anc φAB<0sgnAsgnB<0
48 45 47 bitr3d φBA<0sgnAsgnB<0
49 48 biimpa φBA<0sgnAsgnB<0
50 43 49 eqbrtrd φBA<0sgnAsgnTEN1<0
51 8 adantr φBA<0A
52 sgnclre BsgnB
53 38 52 syl φBA<0sgnB
54 35 53 eqeltrd φBA<0TEN1
55 sgnmulsgn ATEN1ATEN1<0sgnAsgnTEN1<0
56 51 54 55 syl2anc φBA<0ATEN1<0sgnAsgnTEN1<0
57 50 56 mpbird φBA<0ATEN1<0
58 eqid TEN1=TEN1
59 1 2 3 4 5 6 7 8 9 58 signsvtn φATEN1<0VFVE=1
60 57 59 syldan φBA<0VFVE=1