Metamath Proof Explorer


Theorem signsvfpn

Description: Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
signsv.w W = Base ndx 1 0 1 + ndx ˙
signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
signsvf.e φ E Word
signsvf.0 φ E 0 0
signsvf.f φ F = E ++ ⟨“ A ”⟩
signsvf.a φ A
signsvf.n N = E
signsvf.b B = E N 1
Assertion signsvfpn φ 0 < B A V F = V E

Proof

Step Hyp Ref Expression
1 signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
2 signsv.w W = Base ndx 1 0 1 + ndx ˙
3 signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
4 signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
5 signsvf.e φ E Word
6 signsvf.0 φ E 0 0
7 signsvf.f φ F = E ++ ⟨“ A ”⟩
8 signsvf.a φ A
9 signsvf.n N = E
10 signsvf.b B = E N 1
11 8 recnd φ A
12 5 eldifad φ E Word
13 wrdf E Word E : 0 ..^ E
14 12 13 syl φ E : 0 ..^ E
15 9 oveq1i N 1 = E 1
16 eldifsn E Word E Word E
17 5 16 sylib φ E Word E
18 lennncl E Word E E
19 fzo0end E E 1 0 ..^ E
20 17 18 19 3syl φ E 1 0 ..^ E
21 15 20 eqeltrid φ N 1 0 ..^ E
22 14 21 ffvelrnd φ E N 1
23 22 recnd φ E N 1
24 10 23 eqeltrid φ B
25 11 24 mulcomd φ A B = B A
26 25 breq2d φ 0 < A B 0 < B A
27 10 22 eqeltrid φ B
28 sgnmulsgp A B 0 < A B 0 < sgn A sgn B
29 8 27 28 syl2anc φ 0 < A B 0 < sgn A sgn B
30 26 29 bitr3d φ 0 < B A 0 < sgn A sgn B
31 30 biimpa φ 0 < B A 0 < sgn A sgn B
32 5 adantr φ 0 < B A E Word
33 24 adantr φ 0 < B A B
34 11 adantr φ 0 < B A A
35 simpr φ 0 < B A 0 < B A
36 35 gt0ne0d φ 0 < B A B A 0
37 33 34 36 mulne0bad φ 0 < B A B 0
38 10 37 eqnetrrid φ 0 < B A E N 1 0
39 1 2 3 4 9 signsvtn0 E Word E N 1 0 T E N 1 = sgn E N 1
40 10 fveq2i sgn B = sgn E N 1
41 39 40 eqtr4di E Word E N 1 0 T E N 1 = sgn B
42 32 38 41 syl2anc φ 0 < B A T E N 1 = sgn B
43 42 fveq2d φ 0 < B A sgn T E N 1 = sgn sgn B
44 27 adantr φ 0 < B A B
45 44 rexrd φ 0 < B A B *
46 sgnsgn B * sgn sgn B = sgn B
47 45 46 syl φ 0 < B A sgn sgn B = sgn B
48 43 47 eqtrd φ 0 < B A sgn T E N 1 = sgn B
49 48 oveq2d φ 0 < B A sgn A sgn T E N 1 = sgn A sgn B
50 31 49 breqtrrd φ 0 < B A 0 < sgn A sgn T E N 1
51 8 adantr φ 0 < B A A
52 sgnclre B sgn B
53 44 52 syl φ 0 < B A sgn B
54 42 53 eqeltrd φ 0 < B A T E N 1
55 sgnmulsgp A T E N 1 0 < A T E N 1 0 < sgn A sgn T E N 1
56 51 54 55 syl2anc φ 0 < B A 0 < A T E N 1 0 < sgn A sgn T E N 1
57 50 56 mpbird φ 0 < B A 0 < A T E N 1
58 eqid T E N 1 = T E N 1
59 1 2 3 4 5 6 7 8 9 58 signsvtp φ 0 < A T E N 1 V F = V E
60 57 59 syldan φ 0 < B A V F = V E