Metamath Proof Explorer


Theorem signsvfpn

Description: Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
signsvf.e φEWord
signsvf.0 φE00
signsvf.f φF=E++⟨“A”⟩
signsvf.a φA
signsvf.n N=E
signsvf.b B=EN1
Assertion signsvfpn φ0<BAVF=VE

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 signsvf.e φEWord
6 signsvf.0 φE00
7 signsvf.f φF=E++⟨“A”⟩
8 signsvf.a φA
9 signsvf.n N=E
10 signsvf.b B=EN1
11 8 recnd φA
12 5 eldifad φEWord
13 wrdf EWordE:0..^E
14 12 13 syl φE:0..^E
15 9 oveq1i N1=E1
16 eldifsn EWordEWordE
17 5 16 sylib φEWordE
18 lennncl EWordEE
19 fzo0end EE10..^E
20 17 18 19 3syl φE10..^E
21 15 20 eqeltrid φN10..^E
22 14 21 ffvelcdmd φEN1
23 22 recnd φEN1
24 10 23 eqeltrid φB
25 11 24 mulcomd φAB=BA
26 25 breq2d φ0<AB0<BA
27 10 22 eqeltrid φB
28 sgnmulsgp AB0<AB0<sgnAsgnB
29 8 27 28 syl2anc φ0<AB0<sgnAsgnB
30 26 29 bitr3d φ0<BA0<sgnAsgnB
31 30 biimpa φ0<BA0<sgnAsgnB
32 5 adantr φ0<BAEWord
33 24 adantr φ0<BAB
34 11 adantr φ0<BAA
35 simpr φ0<BA0<BA
36 35 gt0ne0d φ0<BABA0
37 33 34 36 mulne0bad φ0<BAB0
38 10 37 eqnetrrid φ0<BAEN10
39 1 2 3 4 9 signsvtn0 EWordEN10TEN1=sgnEN1
40 10 fveq2i sgnB=sgnEN1
41 39 40 eqtr4di EWordEN10TEN1=sgnB
42 32 38 41 syl2anc φ0<BATEN1=sgnB
43 42 fveq2d φ0<BAsgnTEN1=sgnsgnB
44 27 adantr φ0<BAB
45 44 rexrd φ0<BAB*
46 sgnsgn B*sgnsgnB=sgnB
47 45 46 syl φ0<BAsgnsgnB=sgnB
48 43 47 eqtrd φ0<BAsgnTEN1=sgnB
49 48 oveq2d φ0<BAsgnAsgnTEN1=sgnAsgnB
50 31 49 breqtrrd φ0<BA0<sgnAsgnTEN1
51 8 adantr φ0<BAA
52 sgnclre BsgnB
53 44 52 syl φ0<BAsgnB
54 42 53 eqeltrd φ0<BATEN1
55 sgnmulsgp ATEN10<ATEN10<sgnAsgnTEN1
56 51 54 55 syl2anc φ0<BA0<ATEN10<sgnAsgnTEN1
57 50 56 mpbird φ0<BA0<ATEN1
58 eqid TEN1=TEN1
59 1 2 3 4 5 6 7 8 9 58 signsvtp φ0<ATEN1VF=VE
60 57 59 syldan φ0<BAVF=VE