Description: Lemma 4 for smadiadet . (Contributed by AV, 31-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | marep01ma.a | |
|
marep01ma.b | |
||
marep01ma.r | |
||
marep01ma.0 | |
||
marep01ma.1 | |
||
smadiadetlem.p | |
||
smadiadetlem.g | |
||
madetminlem.y | |
||
madetminlem.s | |
||
madetminlem.t | |
||
smadiadetlem.w | |
||
smadiadetlem.z | |
||
Assertion | smadiadetlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marep01ma.a | |
|
2 | marep01ma.b | |
|
3 | marep01ma.r | |
|
4 | marep01ma.0 | |
|
5 | marep01ma.1 | |
|
6 | smadiadetlem.p | |
|
7 | smadiadetlem.g | |
|
8 | madetminlem.y | |
|
9 | madetminlem.s | |
|
10 | madetminlem.t | |
|
11 | smadiadetlem.w | |
|
12 | smadiadetlem.z | |
|
13 | 7 | crngmgp | |
14 | 3 13 | mp1i | |
15 | 1 2 | matrcl | |
16 | 15 | simpld | |
17 | 16 | adantr | |
18 | 14 17 | jca | |
19 | 18 | adantr | |
20 | simprl | |
|
21 | simprr | |
|
22 | 2 | eleq2i | |
23 | 22 | biimpi | |
24 | 23 | adantr | |
25 | 24 | adantr | |
26 | eqid | |
|
27 | 1 26 | matecl | |
28 | 20 21 25 27 | syl3anc | |
29 | 7 26 | mgpbas | |
30 | 28 29 | eleqtrdi | |
31 | 30 | ralrimivva | |
32 | 31 | adantr | |
33 | crngring | |
|
34 | 26 4 | ring0cl | |
35 | 3 33 34 | mp2b | |
36 | 35 29 | eleqtri | |
37 | 32 36 | jctir | |
38 | simpr | |
|
39 | 38 | adantr | |
40 | simpr | |
|
41 | eqid | |
|
42 | 7 5 | ringidval | |
43 | eqid | |
|
44 | 6 41 42 43 | gsummatr01 | |
45 | 19 37 39 39 40 44 | syl113anc | |
46 | 45 | oveq2d | |
47 | 46 | mpteq2dva | |
48 | 47 | oveq2d | |
49 | 1 2 3 4 5 6 7 8 9 10 11 12 | smadiadetlem3 | |
50 | 48 49 | eqtrd | |