Metamath Proof Explorer


Theorem smadiadetlem4

Description: Lemma 4 for smadiadet . (Contributed by AV, 31-Jan-2019)

Ref Expression
Hypotheses marep01ma.a A=NMatR
marep01ma.b B=BaseA
marep01ma.r RCRing
marep01ma.0 0˙=0R
marep01ma.1 1˙=1R
smadiadetlem.p P=BaseSymGrpN
smadiadetlem.g G=mulGrpR
madetminlem.y Y=ℤRHomR
madetminlem.s S=pmSgnN
madetminlem.t ·˙=R
smadiadetlem.w W=BaseSymGrpNK
smadiadetlem.z Z=pmSgnNK
Assertion smadiadetlem4 MBKNRpqP|qK=KYSpRGnNniN,jNifi=Kifj=K1˙0˙iMjpn=RpWYZpRGnNKniNK,jNKiMjpn

Proof

Step Hyp Ref Expression
1 marep01ma.a A=NMatR
2 marep01ma.b B=BaseA
3 marep01ma.r RCRing
4 marep01ma.0 0˙=0R
5 marep01ma.1 1˙=1R
6 smadiadetlem.p P=BaseSymGrpN
7 smadiadetlem.g G=mulGrpR
8 madetminlem.y Y=ℤRHomR
9 madetminlem.s S=pmSgnN
10 madetminlem.t ·˙=R
11 smadiadetlem.w W=BaseSymGrpNK
12 smadiadetlem.z Z=pmSgnNK
13 7 crngmgp RCRingGCMnd
14 3 13 mp1i MBKNGCMnd
15 1 2 matrcl MBNFinRV
16 15 simpld MBNFin
17 16 adantr MBKNNFin
18 14 17 jca MBKNGCMndNFin
19 18 adantr MBKNpqP|qK=KGCMndNFin
20 simprl MBKNiNjNiN
21 simprr MBKNiNjNjN
22 2 eleq2i MBMBaseA
23 22 biimpi MBMBaseA
24 23 adantr MBKNMBaseA
25 24 adantr MBKNiNjNMBaseA
26 eqid BaseR=BaseR
27 1 26 matecl iNjNMBaseAiMjBaseR
28 20 21 25 27 syl3anc MBKNiNjNiMjBaseR
29 7 26 mgpbas BaseR=BaseG
30 28 29 eleqtrdi MBKNiNjNiMjBaseG
31 30 ralrimivva MBKNiNjNiMjBaseG
32 31 adantr MBKNpqP|qK=KiNjNiMjBaseG
33 crngring RCRingRRing
34 26 4 ring0cl RRing0˙BaseR
35 3 33 34 mp2b 0˙BaseR
36 35 29 eleqtri 0˙BaseG
37 32 36 jctir MBKNpqP|qK=KiNjNiMjBaseG0˙BaseG
38 simpr MBKNKN
39 38 adantr MBKNpqP|qK=KKN
40 simpr MBKNpqP|qK=KpqP|qK=K
41 eqid qP|qK=K=qP|qK=K
42 7 5 ringidval 1˙=0G
43 eqid BaseG=BaseG
44 6 41 42 43 gsummatr01 GCMndNFiniNjNiMjBaseG0˙BaseGKNKNpqP|qK=KGnNniN,jNifi=Kifj=K1˙0˙iMjpn=GnNKniNK,jNKiMjpn
45 19 37 39 39 40 44 syl113anc MBKNpqP|qK=KGnNniN,jNifi=Kifj=K1˙0˙iMjpn=GnNKniNK,jNKiMjpn
46 45 oveq2d MBKNpqP|qK=KYSpRGnNniN,jNifi=Kifj=K1˙0˙iMjpn=YSpRGnNKniNK,jNKiMjpn
47 46 mpteq2dva MBKNpqP|qK=KYSpRGnNniN,jNifi=Kifj=K1˙0˙iMjpn=pqP|qK=KYSpRGnNKniNK,jNKiMjpn
48 47 oveq2d MBKNRpqP|qK=KYSpRGnNniN,jNifi=Kifj=K1˙0˙iMjpn=RpqP|qK=KYSpRGnNKniNK,jNKiMjpn
49 1 2 3 4 5 6 7 8 9 10 11 12 smadiadetlem3 MBKNRpqP|qK=KYSpRGnNKniNK,jNKiMjpn=RpWYZpRGnNKniNK,jNKiMjpn
50 48 49 eqtrd MBKNRpqP|qK=KYSpRGnNniN,jNifi=Kifj=K1˙0˙iMjpn=RpWYZpRGnNKniNK,jNKiMjpn